首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Pain S  Parant M 《Chemosphere》2007,67(6):1258-1263
The biological defence mechanism called MXR or MXD for multixenobiotic resistance or defence protects cells against the entry and the accumulation of xenobiotics. As the defence is modulated by man made chemicals, MXR is used as a biomarker of organisms' exposure to environmental contamination. However, to reliably assess and evidence MXR induction, the use of a reference level is required. In this context, we focused on MXR background level in a freshwater bivalve, the zebra mussel Dreissena polymorpha, in order to propose its use as a reference during MXR evaluation. We monitored the MXR transport activity in mussels collected either in a natural population or in a caged population and then transplanted to clean water in the laboratory. The results showed that MXR activity was decreased to its baseline level after an eight to nine day depuration period (13.1+/-3.1; 7+/-2.6; 13.7+/-3.9 pmol RB min(-1)org(-1) after three experiments of laboratory depurations). Moreover, significant MXR induction was measured in depurated zebra mussels exposed to contaminated sites (39.6+/-3.7; 59.2+/-20.3 pmol RB min(-1)org(-1) after two experiments of field exposure), showing that the laboratory depuration did not affect the induction potential. The MXR responses (decrease as well as increase) occurred in few days and were highly significant, highlighting its reactivity in zebra mussels. Finally, this paper confirms the usefulness of MXR as a tool in biomonitoring studies and provides a protocol for field experiments that enables to establish and use the background level of MXR activity as a reference.  相似文献   

2.
Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1–1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly.  相似文献   

3.
Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations.  相似文献   

4.
Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure conditions.  相似文献   

5.
Blue mussels (Mytilus edulis) were exposed to an extract made of natural cyanobacterial mixture containing toxic cyanobacterium Nodularia spumigena (70-110 microg nodularin l(-1), 24-h exposure followed by 144-h depuration period in clean water). Toxin concentration increased from initial 400 to 1100 mg kg(-1) after 24-h exposure, measured by liquid chromatography/mass spectrometry (LC/MS). Acetylcholinesterase activity (AChE), a biomarker of direct neurotoxic effects, showed inhibition after 12 and 24h exposure but returned to control level during the depuration period. Catalase (CAT) activity, an indicator of oxidative stress, showed significantly elevated levels in exposed mussels but only 72 h after the end of the exposure. No change in the activity of glutathione-S-transferase (GST) involved in conjugation reactions could be observed. A gradual yet incomplete elimination of nodularin (from 1100 to 600 mg kg(-1)) was observed during the depuration period, and the tissue levels were 30% lower in clean water after 24 h. The observed increase in oxidative stress indicated by elevated CAT activity is likely connected to detoxification reactions leading to the production of reactive oxygen species, including an apparent time lag in this specific enzymatic defence response. That no change in GST activity was observed suggests that this enzyme is not significantly involved in the detoxification process of nodularin-containing cyanobacterial extract in M. edulis.  相似文献   

6.
The biomarker approach is widely used both in vertebrates and invertebrates for environmental biomonitoring, because it can supply an integrated response for multi-xenobiotics contamination. However, the use of biomarkers requires the identification of every possible variation that can influence the biochemical response, because ecosystems are generally subject to a mixture of pollutants, which can create additive, opposite or competitive effects. In recent years, there has been considerable interest in the use of biomarkers within marine bivalves, while very few data are available for freshwater molluscs. The aim of this research was to investigate changes on EROD and AChE activities in the freshwater bivalve Zebra mussel (Dreissena polymorpha) exposed to different pollutants (Arochlor 1260, CB 153 and 126, pp'DDT, chlorpyrifos, carbaryl) at laboratory conditions, in order to standardize the analytical procedures and to highlight eventual interferences on enzyme activities. Chemical concentrations in the mussel soft tissues were analyzed by GC/MS-MS. Main results showed a significant induction of EROD activity when mussels were exposed to 100 ng/l of PCB mixture of Arochlor 1260 and dioxin-like CB 126, but this congener showed also a clear competitive inhibition after 48 h of exposure. Surprisingly, pp'DDT determined a significant decrease of basal EROD activity after only 24 h of exposure, even if it was not possible to discriminate between the effect of the parent compound and that of its metabolites (DDD, DDE). We also found an interaction between the organophosphate insecticide chlorpyrifos, which does not directly decrease the AChE activity, and terbutilazine. This herbicide increased the biotransformation of the organophosphate compound to its oxidized metabolite (oxon), a much stronger AChE inhibitor. The possible use of the oxime Pyridine-2-Aldoxime Methochloride (2-PAM) to bring back the catalytic activity to basal levels was also demonstrated.  相似文献   

7.
Mussels (Mytilus galloprovincialis), collected from the Bizerta lagoon, were acclimated for four days to various conditions of temperature, salinity, photoperiod and food supply and then exposed to lindane at a concentration of 40 microg l(-1). Catalase activity, which is a biomarker of exposure to an oxidative stress, was measured in the whole soft tissues of control and assay groups. In control mussels, high temperature, high salinity and light duration significantly increased catalase activity whereas this activity decreased when food, composed of freeze-dried, algae was available. When mussels were treated with lindane, catalase activities were higher than in controls. This increase was significant with temperature, salinity and light duration. The food supply did not change catalase activity, which was always higher compared to controls. Oxidative stress was shown in mussels exposed to lindane. The results highlight the need of considering abiotic parameters in biomonitoring studies, and especially when using catalase as a biomarker.  相似文献   

8.
In order to study the short-term ecotoxicity of metals to the freshwater mussel Dreissena polymorpha, the effects of Cu, Zn and Cd on the filtration rate of this mussel were determined in laboratory experiments. Filtration rate was chosen as the endpoint, because it is a sensitive sublethal parameter compared to mortality and it is an important parameter given the ecological role D. polymorpha fulfills. The filtration rate was calculated from the decrease in algal concentration, fed to mussels in aquaria, containing different metal concentrations. The EC50 for Cu (41 microg litre(-1)) was lower than for Cd (388 microg litre(-1)) and Zn (1350 microg litre(-1)). The NOEC(accumulation) for the essential metal Zn was higher than for the essential metal Cu. Cadmium, a non-essential metal, was accumulated at all elevated water concentrations, so the NOEC(accumulation) was the concentration in the control water (<0.2 microg litre(-1)). All (no) effect concentrations found in this study were above the quality criteria set for metal concentrations in Dutch surface water, suggesting that the zebra mussel is sufficiently protected by these quality criteria.  相似文献   

9.
Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.  相似文献   

10.
11.
Since the 1990s, the Lake Maggiore (Northern Italy) has been recognized as an aquatic environment contaminated by DDTs and other persistent organic pollutants, but to date just few studies were carried out to investigate the effects of pollution to aquatic organisms. The aim of this study was the application of a stepwise approach based on chemical data, a suite of biomarkers and the integration of their responses into a biomarker response index (BRI) to evaluate the site-specific quality assessment in different sampling stations of Lake Maggiore, one of the largest European lakes. We used as biological model the freshwater bivalve Zebra mussel (Dreissena polymorpha). Several hundred bivalve specimens were sampled on May 2011 from eight sampling sites located along the lake shoreline. We measured levels of DDTs, PCBs, HCHs, HCB, and PAHs accumulated in D. polymorpha soft tissues by GC/MSn, while the activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione S-transferase, as well as the lipid peroxidation and protein carbonyl content were evaluated in homogenates from native bivalves as oxidative stress indices. Moreover, DNA damage was investigated by the alkaline precipitation assay. Significant imbalances of enzymatic activity were found in mussels from most of the sampling sites, as well as notable increases of damage to macromolecules. Health status of mussels from Baveno was greatly affected by lake pollution, probably due to high levels of DDTs measured in this site, while a wide variability in biomarker responses was found in all the other stations. The application of a BRI allowed distinguishing impacts of pollution to bivalves, confirming mussels from Baveno as the most threatened and revealing that also the health status of bivalves from Suna, Brissago, Pallanza, and Laveno is affected. These evidences suggest the usefulness of a specific index to integrate all the biomarker endpoints in order to provide a correct environmental risk assessment.  相似文献   

12.
Groups of zebra mussels (Dreissena polymorpha) and asiatic clams (Corbicula fluminea) were exposed to cadmium and zinc with the aim of studying the effect of these metals on the 57Co, 110Ag and 134Cs uptake and depuration by these freshwater bivalves. In the presence of zinc, the 57Co concentration factor for the whole organism of the two species was halved, notably because of a decrease of the uptake parameter. Conversely, Zinc and the Cd + Zn mixture increased the 110mAg uptake process by clams and mussels. The two metals also increased the depuration of this radionuclide in mussels, whereas this phenomenon was only observed in clams exposed to cadmium. In comparison with 57Co and 110mAg, the 134Cs bioconcentration was 5-10 times lower in D. polymorpha and not detected in C. fluminea. This weak contamination by this radionuclide resulted from a lower uptake and a higher depuration parameters.  相似文献   

13.
Lepom P  Irmer U  Wellmitz J 《Chemosphere》2012,86(2):202-211
Mercury concentrations have been analysed in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) collected at 17 freshwater sites in Germany from 1993-2009 and 1994-2009, respectively, within the German Environmental Specimen programme. Mercury concentrations in bream ranged from 21 to 881 ng g−1 wet weight with lowest concentrations found at the reference site Lake Belau and highest in fish from the river Elbe and its tributaries. Statistical analysis revealed site-specific differences and significant decreasing temporal trends in mercury concentrations at most of the sampling sites. The decrease in mercury levels in bream was most pronounced in fish from the river Elbe and its tributary Mulde, while in fish from the river Saale mercury levels increased. Temporal trends seem to level off in recent years. Mercury concentrations in zebra mussels were much lower than those in bream according to their lower trophic position and varied by one order of magnitude from 4.1 to 42 ng g−1 wet weight (33-336 ng g−1 dry weight). For zebra mussels, trend analyses were performed for seven sampling sites at the rivers Saar and Elbe of which three showed significant downward trends. There was a significant correlation of the geometric mean concentrations in bream and zebra mussel over the entire study period at each sampling site (Pearson’s correlation coefficient = 0.892, p = 0.00002). A comparison of the concentrations in bream with the environmental quality standard (EQS) of 20 ng g−1 wet weight set for mercury in biota by the EU showed that not a single result was in compliance with this limit value, not even those from the reference site. Current mercury levels in bream from German rivers exceed the EQS by a factor 4.5-20. Thus, piscivorous top predators are still at risk of secondary poisoning by mercury exposure via the food chain. It was suggested focusing monitoring of mercury in forage fish (trophic level 3 or 4) for compliance checking with the EQS for biota and considering the age dependency of mercury concentrations in fish in the monitoring strategy.  相似文献   

14.
This study consisted of a site characterization followed by biomonitoring the zebra mussel, Dreissena polymorpha, at the Times Beach Confined Disposal Facility (CDF), located in Buffalo, New York. Concentrations of selected contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals -arsenic (As), chromium (Cr), barium (Ba), mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se) and silver (Ag)-were at or below detection limits in the water column. Sediment contaminant concentrations, recorded as dry weight, were as high as 549 mg/kg for total PAHs, 9 mg/kg for PCB Aroclor 1248 and 54, 99, 6, 355, 637 and 16 mg/kg for the metals As, Ba, Cd, Cr, Pb and Hg, respectively. To predict contaminant bioavailability, elutriate and whole sediment toxicity tests were performed utilizing the cladoceran, Daphnia magna. Whole sediment tests indicated significant impact. Control survival was 84%, while sediment treatment had survival ranging from 1 to 7%. Mean control reproduction was 86.8 neonates, whereas treatment reproduction ranged from 1.4 to 9.0. Zebra mussels placed both in the water column (Upper) and at the sediment level (Lower) survived the 34-day exposure. Contaminants that significantly accumulated in zebra mussel tissue (wet wt mg/kg) were total PAHs (6.58), fluoranthene (1.23), pyrene (1.08), chrysene (0.98), benzo(a)anthracene (0.60), PCB Aroclor 1248 (1.64), As (0.97), Cr (2.87) and Ba (7.00). Accumulation of these contaminants in zebra mussel tissue represent a potentially realistic hazard to organisms (i.e. fish and birds) that feed on them.  相似文献   

15.
Perna viridis is an ideal animal for studying the impairment caused by the effects of heavy metals that are often detected in coastal areas. Preliminary bioassay tests revealed that the lethal (LC(100)), median lethal (LC(50)) and sublethal (LC(0)) concentration of silver and chromium to P. viridis were 6.5, 4.0, 2.0 mg l(-1) and 4.5, 2.5, 1.0 mg l(-1), respectively. Toxic effect of silver and chromium was evaluated in the green mussel P. viridis, with reference to oxygen consumption, filtration rate and ATPase system in laboratory experiments. These parameters were selected as the end point of sublethal stress. Oxygen consumption and filtration rates were calculated as a measure of decline in the dissolved oxygen level and algal concentration (feed) in the aquaria water, respectively. Silver and chromium affects both oxygen consumption and filtration rate significantly (P<0.01) at 96 h when compared to control. The activity of ATPases system in the gills, hepatopancreas, ovary and muscle of mussels were inhibited by silver and chromium indicating that metals exerted significant toxic effect. The inhibition of Na(+)K(+) ATPase, Ca(2+) ATPase and Mg(2+) ATPase in the mussels were significant (P<0.05) for silver and highly significant (P<0.01) for chromium, which indicates that chromium was more toxic to mussels when compared to silver. The assessment of oxygen consumption, filtration and ATPases system can thus be used as a valid biomarker in aquatic ecotoxicology studies.  相似文献   

16.
In this study, a spatial and temporal survey at three sites located in the "canals" of the Venice historic centre (Italy) and at a reference site was undertaken to evaluate stress effects on mussels sampled in the Venice urban area, where raw sewage is discharged without treatment directly into the water. A battery of biomarkers (metallothionein, micronuclei, condition index and survival in air) was used to evaluate the stress condition of the animals. At the same time the alkali-labile phosphate assay (ALP) was performed in mussel' hemolymph with the aim to find an estrogenic effect biomarker in this mussel species. Biomarker results showed an impairment of the general health condition in the mussels coming from the urban area, in agreement with the chemical analysis. Significantly higher level of the ALP was found in male mussels sampled in April in the urban area, in comparison with the ones from the reference site (P<0.001). Finally, the PCA proved an easy and useful tool to summarize the obtained results, also able to classify the data to indicate a pollution gradient in the Venice urban area.  相似文献   

17.
Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 μg L−1) of the β-blocker metoprolol in a flow-through system for seven days. The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations.  相似文献   

18.
Binelli A  Ricciardi F  Riva C  Provini A 《Chemosphere》2005,61(8):1074-1082
The increase of ethoxyresorufin dealkylation (EROD) and the inhibition of acetylcholinesterase (AChE) as biomarkers have been commonly used in vertebrates for the persistent organic pollutants (POPs) biomonitoring of aquatic environments, but very few studies have been performed for invertebrates. Previous researches demonstrated the interference due to some chemicals on EROD and AChE activities of the freshwater bivalve Zebra mussel (Dreissena polymorpha) in laboratory and field studies, showing its possible use for the screening of POP effects. We investigated the contamination of the Italian sub-alpine great lakes (Maggiore, Lugano, Como, Iseo, Garda) by the biomarker approach on Zebra mussel specimens collected at 17 sampling sites with different morphometric characteristics and anthropization levels. Results showed a homogeneous contamination of AChE inhibitors in Lake Garda, Maggiore, Como and Iseo with values ranging from 0.5 to 3 nmol/min/mg proteins and with an average inhibition of about 66% to controls. The planar compounds pollution, able to activate the EROD activity, seems higher in some sampling stations of Lake Garda, Como and Iseo (2-4 pmol/min/mg proteins) than that measured in Lake Lugano (1.5-3 pmol/min/mg proteins). On the contrary, the enzyme activity in Lake Maggiore showed an interesting opposite effect of AhR-binding compounds and trace metals. Finally, the possible use of Zebra mussel specimens maintained at laboratory conditions as controls against the selection of the less polluted sampling site is discussed.  相似文献   

19.
On three occasions between 1998 and 2000, freshwater mussels were collected by divers in Lake Memphremagog during the spring and transplanted to various locations in the St-Fran?ois River (Quebec, Canada). Mussel growth was monitored by comparing total weight and length at the beginning and end of the exposure period. In 1998, mussels were caged for 60 days at 10 stations, including locations receiving treated effluents from three pulp and paper mills. Overall, there was an apparent trend of increased mussel growth from upstream to downstream along the river. However, mussels caged downstream from the effluent discharge of a bleached kraft pulp and paper mill grew more slowly than those caged immediately upstream in the river. In 1999 and 2000, we further investigated the situation in the vicinity of this bleached kraft mill. The measurements again indicated that growth of mussels in the effluent plume from this mill was reduced in comparison to sites upstream. Overall, in terms of growth, the caged mussels responded both positively and negatively to different environmental conditions. Compared with other monitoring approaches used at these sites during the same period, the caged mussel experiment results were consistent with the trends observed with the benthic invertebrate survey but not with the trends observed for fish.  相似文献   

20.
This study was designed to compare the metallothionein (MT) response capacity of two freshwater bivalves, Corbicula fluminea and Dreissena polymorpha, along an environmental gradient of polymetallic pollution. The bivalves were transplanted into 4 stations in southwestern France, with a cadmium and zinc pollution gradient. MT and metal concentrations were measured in the soft bodies of the clams and mussels over 2.5 months. In the zebra mussels, variations in MT concentrations were strictly correlated to progressive Cd and Zn bioaccumulation. In contrast, the faster response in the clams appeared positively correlated to Cd accumulation only, with the activation of efficient detoxification mechanisms which limited Cd bioaccumulation and reduced Zn concentrations over time. Nevertheless, despite stronger metal accumulation factors in D. polymorpha, C. fluminea revealed higher sensitivity of MT response along the pollution gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号