首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of Amazon Deforestation and Fire by Parks and Indigenous Lands   总被引:10,自引:0,他引:10  
Abstract:  Conservation scientists generally agree that many types of protected areas will be needed to protect tropical forests. But little is known of the comparative performance of inhabited and uninhabited reserves in slowing the most extreme form of forest disturbance: conversion to agriculture. We used satellite-based maps of land cover and fire occurrence in the Brazilian Amazon to compare the performance of large (>10,000 ha) uninhabited (parks) and inhabited (indigenous lands, extractive reserves, and national forests) reserves. Reserves significantly reduced both deforestation and fire. Deforestation was 1.7 (extractive reserves) to 20 (parks) times higher along the outside versus the inside of the reserve perimeters and fire occurrence was 4 (indigenous lands) to 9 (national forests) times higher. No strong difference in the inhibition of deforestation ( p = 0.11) or fire ( p = 0.34) was found between parks and indigenous lands. However, uninhabited reserves tended to be located away from areas of high deforestation and burning rates. In contrast, indigenous lands were often created in response to frontier expansion, and many prevented deforestation completely despite high rates of deforestation along their boundaries. The inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density. Indigenous lands occupy one-fifth of the Brazilian Amazon—five times the area under protection in parks—and are currently the most important barrier to Amazon deforestation. As the protected-area network expands from 36% to 41% of the Brazilian Amazon over the coming years, the greatest challenge will be successful reserve implementation in high-risk areas of frontier expansion as indigenous lands are strengthened. This success will depend on a broad base of political support.  相似文献   

2.
Conservation of the Marbled Murrelet under the Northwest Forest Plan   总被引:1,自引:0,他引:1  
Abstract:  The Marbled Murrelet ( Brachyramphus marmoratus ) was listed as threatened in 1992, primarily because of loss of its old-forest nesting habitat. Monitoring conducted over the first 10 years following implementation of the Northwest Forest Plan shows at-sea murrelet populations appear to be stationary, but recruitment is very low and demographic models project a 4–6% annual rate of decline. Monitoring of nesting habitat indicated there were about 1.6 million ha of higher-suitability nesting habitat on all lands at the start of the plan, about half of which occurred on federal lands. Most (88%) of higher-suitability habitat on federal lands was protected within reserves. Over the past 10 years, losses of habitat due primarily to fire have totaled about 2% on federal lands. Losses have been much greater (12%) on nonfederal lands, due primarily to timber harvest. Habitat is expected to accrue within reserves as younger forest matures and attains sufficient diameter to support nesting sites. At-sea estimates of population size are strongly and positively correlated with amounts of adjacent nesting habitat at a broad scale, supporting the idea that amounts of nesting habitat are a primary driver in wide-scale murrelet population distribution. Conditions at sea, however, such as temperature regimes, prey availability, and pollutants, continue to affect murrelet populations. The system of large reserves seems to have achieved the short-term objective of conserving much of the remaining nesting habitat on federal lands. These reserves are also likely to contribute to the long-term objective of creating large, contiguous blocks of nesting habitat. The plan has a primary role in conserving and restoring nesting habitat on federal land but will succeed in this role only if land allocations calling for such protection are in place for many decades.  相似文献   

3.
Encouraging motivated landowners to not only engage in conservation action on their own property but also to recruit others may enhance effectiveness of conservation on private lands. Landowners may only engage in such recruitment if they believe their neighbors care about the conservation issue, will positively respond to their conservation efforts, and are likely to take action for the conservation cause. We designed a series of microinterventions that can be added to community meetings to change these beliefs to encourage landowner engagement in recruitment of others. The microinterventions included neighbor discussion, public commitment making, collective goal setting, and increased observability of contributions to the conservation cause. In a field experiment, we tested whether adding microinterventions to traditional knowledge-transfer outreach meetings changed those beliefs so as to encourage landowners in Hawaii to recruit their neighbors for private lands conservation. We delivered a traditional outreach meeting about managing the invasive little fire ant (Wasmannia auropunctata) to 5 communities and a traditional outreach approach with added microinterventions to 5 other communities. Analysis of pre- and post-surveys of residents showed that compared with the traditional conservation outreach approach, the microinterventions altered a subset of beliefs that landowners had about others. These microinterventions motivated reputationally minded landowners to recruit and coordinate with other residents to control the invasive fire ant across property boundaries. Our results suggest integration of these microinterventions into existing outreach approaches will encourage some landowners to facilitate collective conservation action across property boundaries.  相似文献   

4.
Abstract:  The contemporary southwestern United States is characterized by fire-adapted ecosystems; large numbers of federally listed threatened and endangered species; a patchwork of federal, state, and private landownership; and a long history of livestock grazing as the predominant land use. I compared eight sites in southern Arizona and New Mexico to assess the interacting effects of these characteristics on conservation practices and outcomes. There was widespread interest and private-sector leadership in restoring fire to southwestern rangelands, and there is a shortage of predictive scientific knowledge about the effects of fire and livestock grazing on threatened and endangered species. It was easier to restore fire to lands that were either privately owned or not grazed, in part because of obstacles created by threatened and endangered species on grazed public lands. Collaborative management facilitated conservation practices and outcomes, and periodic removal of livestock may be necessary for conservation, but permanent livestock exclusion may be counterproductive because of interactions with land-use and landownership patterns.  相似文献   

5.
Restoration of Landscape Structure Altered by Fire Suppression   总被引:2,自引:0,他引:2  
There is increasing interest in applying landscape ecological research to the management of wildlands, particularly regarding the negative effects of fragmentation and the benefits of corridors. Patch-producing large disturbances, such as fires and floods, produce a spatial mosaic structure in landscapes to which many species are sensitive. Management of the spatial structure of the patch mosaic has seldom been an explicit concern, however, in part because of insufficient knowledge about bow this spatial structure is affected by alterations in the disturbance regime. Yet the patch mosaic structure of many landscapes has been altered by disturbance control (such as fire suppression), and there is substantial interest in restoring natural disturbance regimes in some wildland landscapes. It has been proposed that, in landscapes subjected to decades of fire suppression, simple reinstatement of the natural fire regime may lead to adverse effects because fuel buildup during fire suppression may result in unusually large fires. It has also been proposed that the use of small prescribed fires may be an effective approach to restoration of landscapes subjected to fire suppression. Here I use a spatial GIS-based simulation model to analyze the effects of reinstating a natural fire regime in the Boundary Waters Canoe Area, Minnesota, after 82 years of fire suppression. The simulation experiment suggests that suppression can be expected to significantly alter landscape structure, but landscape structure can generally be restored within 50–75 years by reinstating the natural fire regime. Unusually large fires would probably hasten the restoration of landscape structure, while small prescribed fires will not restore the landscape but instead will produce further alteration.  相似文献   

6.
Postfire Management on Forested Public Lands of the Western United States   总被引:1,自引:0,他引:1  
Abstract:  Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.  相似文献   

7.
SUMMARY

In recent years, indigenous tenure over forest lands has emerged as a means to conserve forests while recognizing indigenous rights. There is concern, however, that indigenous reserves may not be an appropriate policy tool for sustained forest conservation. Our research examined how recognition of indigenous common-property rights has controlled agricultural expansion and conserved forests in Bosawas Biosphere Reserve, Nicaragua. We used satellite imagery with empirical data gathered in the field on land-use institutions, population pressures, and land-use practices to compare whether indigenous communities under territorial management or public management are better able to (1) control the ‘fast threat’ of frontier expansion and (2) address the long-term ecological threats posed by indigenous land-use practices and institutional changes in the region. Our findings are that indigenous residents who share common-property rights over their territories are better able to control agricultural expansion than are indigenous residents living on public lands. With respect to the long-term threats to the region, a series of simulations of possible land-use pressures demonstrate that the enforcement of territorial boundaries and further development of indigenous forest management rules will prove crucial in determining land-use capacity and deforestation over the next 50 years.  相似文献   

8.
Forest fire is regarded as one of the most significant factors leading to land degradation. While evaluating fire hazard or producing fire risk zone maps, quantitative analyses using historic fire data is often required, and during all these modeling and multi-criteria analysis processes, the fire event itself is taken as the dependent variable. However, there are two main problematic issues in analyzing historic fire data. The first difficulty arises from the fact that it is in point format, whereas a continuous surface is frequently needed for statistically analyzing the relationship of fire events with other factors, such as anthropogenic, topographic and climatic conditions. Another, and probably the most bothersome challenge is to overcome inaccuracy inherent in historic fire data in point format, since the exact coordinates of ignition points are mostly unknown. In this study, kernel density mapping, a widely used method for converting discrete point data into a continuous raster surface, was used to map the historic fire data in Mumcular Forest Sub-district in Mu?la, Turkey. The historic fire data was transferred onto the digital forest stand map of the study area, where the exact locations of ignition points are unknown; however, the exact number of ignition points in each compartment of the forest stand map is known. Different random distributions of ignition points were produced, and for each random distribution, kernel density maps were produced by applying two distinct kernel functions with several smoothing parameter options. The obtained maps were compared through correlation analysis in order to illustrate the effect of randomness, choice of kernel function and smoothing parameter. The proposed method gives a range of values rather than a single bandwidth value; however, it provides a more reliable way than comparing the maps with different bandwidths subjectively by eye.  相似文献   

9.
Understanding and being able to predict forest fire occurrence, fire growth and fire intensity are important aspects of forest fire management. In Canada fire management agencies use the Canadian Forest Fire Danger Rating System (CFFDRS) to help predict these elements of forest fire activity. In this paper a review of the CFFDRS is presented with the main focus on understanding and interpreting Canadian Fire Weather Index (FWI) System outputs. The need to interpret the outputs of the FWI System with consideration to regional differences is emphasized and examples are shown of how the relationship between actual fuel moisture and the FWI System’s moisture codes vary from region to region. Examples are then shown of the relationship between fuel moisture and fire occurrence for both human- and lightning-caused fire for regions with different forest composition. The relationship between rate of spread, fuel consumption and the relative fire behaviour indices of the FWI System for different forest types is also discussed. The outputs of the CFFDRS are used every day across Canada by fire managers in every district, regional and provincial fire management office. The purpose of this review is to provide modellers with an understanding of this system and how its outputs can be interpreted. It is hoped that this review will expose statistical modellers and other researchers to some of the models used currently in forest fire management and encourage further research and development of models useful for understanding and managing forest fire activity.
B. Mike WottonEmail:
  相似文献   

10.
Abstract:  Farmlands are expansive, diverse, and intensively managed ecosystems. These lands, so critical to human welfare, are threatened by growing stresses as demand for food escalates, fresh water wanes, cheap fuels deplete, and other uses jostle for space. With these coming pressures, how can we foster permanence on the lands that sustain us? In this essay I contemplate the hypothesis that the greenhouse gases, because they emanate from the interwoven flows of C, N, and energy in ecosystems, can help steer us toward permanence (sustainability). Alongside other indicators these emissions may detect the ecosystem's pulse, alerting us to inefficiencies and guiding us to better practices. To be effective signals, however, the greenhouse gases will need to be considered in their local settings, monitored longer and in more "listening places," and measured across boundaries of disciplines and biomes. This approach may help reduce greenhouse gas emissions from our farmlands. But we may find that, in the long run, the main beneficiaries of our inquiry have been, not just the atmosphere, but our fragile lands, perhaps in ways we cannot yet foresee.  相似文献   

11.
Abstract:   Resources for prescribed fire are frequently insufficient to manage public lands for all conservation and resource management objectives, necessitating prioritization of the application of fire across the landscape within any given year. Defining tradeoffs when applying prescribed fire to large landscapes is problematic not only because of the complexity of weighing competing management objectives at the landscape scale, but also because of the difficult nature of independently applying need-to-burn criteria to large areas. We present a case study of a simple modeling process implemented at Eglin Air Force Base in the Florida Panhandle (U.S.A.) to prioritize the application of prescribed fire. In a workshop setting, managers and biologists identified key conservation criteria and landscape management objectives that drive the application of prescribed fire. Remote sensing and other spatial data were developed to directly or indirectly represent all these criteria. Using geographic information system software, managers and biologists weighted each criterion according to its relative contribution to overall burn prioritization, and individual values for the criterion were scored according to how they influence the need to burn. Subsequently, this process has been validated and modified through ecological monitoring. This modeling process has also been applied to the 77,400-ha Blackwater River State Forest, public land adjacent to Eglin Air Force Base, demonstrating its applicability to lands with varying management priorities. The advantages of this model-based approach for prioritizing prescribed fire include the reliance on accessible, inexpensive software, the development of spatially explicit management objectives, the ease of transferability, and clearly stated assumptions about management that may be tested and reviewed through monitoring and public comment.  相似文献   

12.
Abstract:  The ecological impacts of wildland fire-suppression activities can be significant and may surpass the impacts of the fire itself. A recent paradigm shift from fire control to fire management has resulted in increased attention to minimizing the negative effects of suppression. While the philosophy behind minimum-impact suppression tactics has provided a good first step in this direction, increased attention to the ecological effects of suppression is needed, especially in the management of public lands. We reviewed the potential impacts of suppression on land, air, and water resources and the impacts of using fire to help control fire. Effects on land resources include erosion, which is exacerbated by the construction of fire lines, temporary roads, and helicopter pads, and some postfire rehabilitation activities. Although the fire itself is the most obvious source of air pollution, the vehicles used in suppression activities contribute to this problem and to noise pollution. Water resources, including aquatic flora and fauna, may be seriously affected by suppression activities that can increase erosion, sedimentation, turbidity, and chemical contamination. Finally, the use of backburns and burnout operations contributes to the risk of soil and water contamination, increases the total area burned, and promotes more intense fires or more homogeneous burned areas. Although no fire-management strategy should be applied uniformly, some general techniques such as use of natural clearings, natural barriers, and appropriately sized fire lines, "leave no-trace" camping, and careful application of fuels and retardants can be employed to minimize the impacts of suppression.  相似文献   

13.
Insularization of Tanzanian Parks and the Local Extinction of Large Mammals   总被引:8,自引:0,他引:8  
Island biogeography theory predicts that species will be lost on habitat "islands" created by the fragmentation of continental regions. Many Tanzanian parks are rapidly becoming habitat islands as a result of human settlement, agricultural development, and the active elimination of wildlife on adjacent lands. The rate of extinction of mammals in six Tanzanian parks over the last 35–83 years is significantly and inversely related to park area, suggesting that increasing insularization of the parks has been an important contributory factor in large mammal extinctions. I compared observed patterns of persistence of mammals in Tanzanian parks to predictions derived from earlier extinction models. The predictions of the S 1 models of Soulé et al. (1979) and Burkey (1994) and the S 2 and S 3 models of Soulé et al. (1979) match very closely the observed pattern of persistence of mammals in Tanzanian parks. The loss of mammal species will probably continue, particularly in the smaller parks. Establishment of wildlife corridors linking the parks in northern Tanzania could help to reduce the potential loss of species in the future.  相似文献   

14.
Historic Fire Regime in Southern California Shrublands   总被引:5,自引:0,他引:5  
  相似文献   

15.
ABSTRACT

Post-frontier governance in the Brazilian Amazon highlights the interaction of regulatory technologies, institutions and practices to combat illegal deforestation and appropriation of public lands. While the Amazon fires received tremendous media coverage in 2019, the dismantlement of environmental laws and regulatory agencies has supported the rise in deforestation as early as 2012. We discuss the impact of post-frontier governance in Southwest-Pará by analyzing the spatial distribution of deforestation, territorial management, law enforcement, and environmental regularization from 2000 to 2018. The integration of spatial analysis with qualitative field surveys in the blacklisted municipality Novo Progresso shows that deforestation control largely fails, specifically in undesignated public lands. While land tenure security remains the biggest challenge in the region, the persistent imagination of free-for-all frontier spaces encourages the uncontrolled appropriation of and speculation with public lands. Here, the Rural Environmental Registry (CAR) has been identified as a key instrument to secure land claims.  相似文献   

16.
Schoennagel T  Veblen TT  Kulakowski D  Holz A 《Ecology》2007,88(11):2891-2902
This study investigates the influence of climatic variability on subalpine forest fire occurrence in western Colorado during the AD 1600-2003 period. Interannual and multidecadal relationships between fire occurrence and the El Ni?o Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) were examined, in addition to the effects of phase interactions among these oscillations. Fires occurred during short-term periods of significant drought and extreme cool (negative) phases of ENSO and PDO and during positive departures from mean AMO index. At longer time scales, fires exhibited 20-year periods of synchrony with the cool phase of the PDO, and 80-year periods of synchrony with extreme warm (positive) phases of the AMO. Years of combined positive AMO and negative ENSO and PDO phases represent "triple whammies" that significantly increased the occurrence of drought-induced fires. Fires were synchronous with this phase combination over 0-30 year periods and distinctly asynchronous with the opposite phase combination. Overall, because fires are synchronous at supra-annual to multidecadal time scales with warm AMO events, particularly when combined with cool ENSO and PDO phases, this suggests that we may be entering a qualitatively different fire regime in the next few decades due to the recent shift in 1998 to a likely long-term warm AMO phase. Although uncertainty remains regarding the effects of CO2-induced warming at regional scales, given the multidecadal persistence of the AMO there is mounting evidence that the recent shift to the positive phase of the AMO will promote higher fire frequencies in the region.  相似文献   

17.
Abstract:  The fate of private lands is widely seen as key to the fate of biodiversity in much of the world. Organizations that work to protect biodiversity on private lands often hope that conservation actions on one piece of land will leverage the actions of surrounding landowners. Few researchers have, however, examined whether protected lands do in fact encourage land conservation nearby or how protected lands affect development in the surrounding landscape. Using spatiotemporal data sets on land cover and land protection for three sites (western North Carolina, central Massachusetts, and central Arizona), we examined whether the existence of a protected area correlates with an increased rate of nearby land conservation or a decreased rate of nearby land development. At all sites, newly protected conservation areas tended to cluster close to preexisting protected areas. This may imply that the geography of contemporary conservation actions is influenced by past decisions on land protection, often made for reasons far removed from concerns about biodiversity. On the other hand, we found no evidence that proximity to protected areas correlates with a reduced rate of nearby land development. Indeed, on two of our three sites the development rate was significantly greater in regions with more protected land. This suggests that each conservation action should be justified and valued largely for what is protected on the targeted land, without much hope of broader conservation leverage effects.  相似文献   

18.
The evaluation of area-specific risks for large fires is of great policy relevance to fire management and prevention. When analyzing data for the burned areas of large fires in Canada, we found that there are dramatic patterns that cannot be adequately modelled by traditional hierarchical modelling assuming spatial autocorrelation. In this paper, we use the robust locally weighted scatterplot smoothing (LOESS) technique to remove spatial and temporal trends; and we account for periodical cycles by employing the relevant periodic functions as covariates in a hierarchical Gamma mixed effects model. Based on the results of this generalized multilevel analysis of large fire size, we provide an area-specific relative risks ranking system for Canada and confirm that lightning tends to cause more severe damage in terms of fire size than human factor. A diagnostic check on the modelling shows that large fires data are reasonably modelled using this combination of semiparametric and mixed effects modelling approaches.  相似文献   

19.
Effects of land-use change on the conservation of biodiversity have become a concern to conservation scientists and land managers, who have identified loss and fragmentation of natural areas as a high-priority issue. Despite urgent calls to inform national, regional, and state planning efforts, there remains a critical need to develop practical approaches to identify where important lands are for landscape connectivity (i.e., linkages), where land use constrains connectivity, and which linkages are most important to maintain network-wide connectivity extents. Our overall goal in this paper was to develop an approach that provides comprehensive, quantitative estimates of the effects of land-use change on landscape connectivity and illustrate its use on a broad, regional expanse of the western United States. We quantified loss of habitat and landscape connectivity for western forested systems due to land uses associated with residential development, roads, and highway traffic. We examined how these land-use changes likely increase the resistance to movement of forest species in non-forested land cover types and, therefore, reduce the connectivity among forested habitat patches. To do so, we applied a graph-theoretic approach that incorporates ecological aspects within a geographic representation of a network. We found that roughly one-quarter of the forested lands in the western United States were integral to a network of forested patches, though the lands outside of patches remain critical for habitat and overall connectivity. Using remotely sensed land cover data (ca. 2000), we found 1.7 million km2 of forested lands. We estimate that land uses associated with residential development, roads, and highway traffic have caused roughly a 4.5% loss in area (20 000 km2) of these forested patches, and continued expansion of residential land will likely reduce forested patches by another 1.2% by 2030. We also identify linkages among forest patches that are critical for landscape connectivity. Our approach can be readily modified to examine connectivity for other habitats/ecological systems and for other geographic areas, as well as to address more specific requirements for particular conservation planning applications.  相似文献   

20.
Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号