首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depuration of copper and zinc by green oysters and blue mussels of Taiwan   总被引:1,自引:0,他引:1  
This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 microg g(-1) day(-1) and then levels off. During this exponential decrease period approximately 67% of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 +/- 111 microg g(-1) to 344 +/- 18.7 microg g(-1) the depuration rates decreased from 245 microg g(-1) day(-1) to 0.08 microg g(-1) day(-1). This means that green oysters had a 16-fold higher copper depuration rate (351 microg g(-1) day(-1)) than normal oysters (21.5 microg g(-1) day(-1)) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91% of the accumulated copper was lost during the first 6-day period; copper contents declined from 20.2 +/- 3.41 microg g(-1) to 1.80 +/- 0.21 microg g(-1). Only 36% of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11.6 and 25.1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16.7 and 30.1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20.2 +/- 3.41 microg g(-1), the biological half-life is only 6.40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.  相似文献   

2.
The extensive use of veterinary drugs in agriculture leads to contamination of manure. If this manure is used as fertiliser, soil may be exposed to the respective drugs. Additionally soil exposure may stem from contaminated sewage sludge that is used on some agricultural land as fertiliser. This study focuses on the fate of antibiotics in soil. We present a 120-day degradation experiment of six commonly used antibiotics: erythromycin, roxithromycin oleandomycin, tylosin, salinomycin and tiamulin in soil as well as calculating the resulting half-lives. The half-lives were 20 days for erythromycin, 27 days for oleandomycin, 8 days for tylosin, 16 days for tiamulin and 5 days for salinomycin; all according to 1st order kinetics. The concentration of roxithromycin remained nearly unchanged during the whole experiment.  相似文献   

3.
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O3] was expressed relative to the yield under base [O3] (≤26 ppb). With potato, current [O3] (31–50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O3], future [O3] (51–75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O3]. These findings confirm the rising [O3] as a threat to food security for the growing global population in this century.  相似文献   

4.
The importance of dry deposition was assessed at perimeter and interior locations in two vegetative canopies. Dry deposition was measured directly by washing particles from leaves. Ambient particles and gases were also collected at both locations within the canopies. Ambient concentrations on the canopy interior were decreased relative to perimeter concentrations due to dry deposition scavenging by the canopy. The least scavenging was found for SO(4)(2-) and NH(4)(+) and the highest scavenging was found for HNO(3). Dry deposition of all species was higher to perimeter vegetative and surrogate surfaces than to interior surfaces, due both to the lower concentrations and the lower wind speeds in the sheltered interior. Deposition velocities compared well with other experimental and theoretical values.  相似文献   

5.
The response to ozone (O(3)) of greenness, in terms of estimated total chlorophyll concentration (Chl), of leaves at three plant canopy levels was studied in tomato (Lycopersicon esculentum Mill.) over a 10-day period following O(3) exposure. Plants of the cultivars 'New Yorker' and 'Tiny Tim' were grown at 25/15 degrees or 30/15 degrees day/night temperatures in growth chambers and exposed to 0.00, 0.08, 0.16 or 0.24 microl litre(-1) O(3) for 7 h day(-1) for four consecutive days in controlled environment exposure chambers. Measurement of Chl in the top, middle and bottom canopy leaves with a calibrated SPAD-501 leaf greenness meter indicated that the growth temperatures tested did not significantly influence the response of Chl to O(3). Ozone-induced loss of Chl was widespread in the entire foliage canopy, including foliage which did not demonstrate visible injury. In both cultvars the Chl in leaves at all three canopy levels declined as a function of increasing O(3) concentration when measured 2, 4, 6, 8 and 10 days after the exposure period. However, the slopes for leaves in the top and middle canopies decreased with increasing time after exposure. An analysis of this apparent Chl recovery indicated that leaves in the top and middle canopies exposed to 0.16 and 0.24 microl litre(-1) increased in greenness at a rapid rate after the marked initial decline associated with O(3) treatment. The apparent recovery of the top canopy may have reflected the growth of new leaves and their inclusion in the measurements, but this was not the case for the middle canopy for which the same leaves were measured throughout the post-exposure period. Bottom canopy leaves did not demonstrate significant recovery of Chl.  相似文献   

6.
The impacts of ambient ozone pollution on crops in the Mediterranean countries have been recorded regularly in the so-called “grey literature” of UN/ECE Workshop Reports for the Convention on Long-range Transboundary Air Pollution, and less frequently in the peer-reviewed literature. This short communication reviews such records and shows that ambient ozone episodes have been reported to cause visible injury on 24 agricultural and horticultural crops grown in commercial fields including three of the most important crops in the region (wheat, maize, and grapevine). On one occasion, the damage was so extensive that complete crop loss occurred in commercial glasshouses of Butterhead lettuce in one area of Greece. Experiments with open-top chambers have indicated that ambient ozone caused 17–39% yield loss in crops such as wheat, bean, watermelon and tomato. The applicability of the long-term critical level of ozone described by Fuhrer et al. (Environ. Pollut. 97 (1997) 91) for the Mediterranean areas is also considered.  相似文献   

7.
This investigation was undertaken to survey the fungal and mycotoxin contamination of South African wheat ranging from that growing in the field to processed wheat products. Samples of wheat were taken from various growing areas in South Africa and screened for fungi and mycotoxins, using a range of methodologies, including chromatography, immunoaffinity/fluorimetry, and cytotoxicity testing. Similar samples were taken from supermarkets and retail outlets in South Africa and analyzed in a similar manner. The result showed that a range of fungi and mycotoxins could be detected in wheat in all these sample types. The major fungal contaminants were Fusarium spp. and their attendant mycotoxins, in particular deoxynivalenol, which is in keeping with the observations made in the rest of the world. An interesting observation was that samples of wheat taken from the field with heavy Fusarium contamination were contaminated with fumonisin B1, which is not normally associated with this crop. Of more concern were the low but persistent levels of mycotoxins and fungi in wheat-based products sold directly to the public.  相似文献   

8.
Imidacloprid was applied as seed treatment (Gaucho 70 WS, 5 and 10 g ai kg(-1) seed) and foliar spray (Confidor 200 SL, 20 and 40 g ai ha(-1)) at 50% pod formation stage on mustard (Brassica campestris Linn.) to control mustard aphid, Lipaphis erysimi Kalt. It was detectable upto 82 and 96 days in plants after sowing from lower and higher doses of seed treatment. However, it dissipated faster and became nondetectable after 7 and 15 days of foliar treatments from lower and higher rates of application, respectively. The dissipation models yielded the rate constants of 0.0209 and 0.0230 and 0.0736 and 0.0779 day(-1) from seed and foliar treatment. The corresponding half-lives of 14.40 and 13.07 and 4.09 and 3.86 days were recorded. This suggested that the dissipation was independent of initial doses and followed a first order rate kinetics. The projected TMRC of imidacloprid from seed (0.136 and 0.225 mg person(-1) day(-1)) and foliar (0.069 and 0.1497 mg person(-1) day(-1)) treatments were found lower than the MPI (3.135 mg person(-1) day(-1)). At harvest mustard grains did not contain imidacloprid residues. The absence of imidacloprid in 0-10 and 10-20 cm soil layers indicated no leaching of insecticide. Therefore, imidacloprid treatments could be taken as safe for crop protection, consumption of leaves and environmental contamination point of view.  相似文献   

9.
A pilot-scale, ponded wetland consisting of an open pond and a vegetated pond in series was constructed on a cotton farm in northern New South Wales, Australia, and assessed for its potential to remove pesticides from irrigation tailwater. Ten incubation periods ranging from 7 to 13 days each were conducted over two cotton growing seasons to monitor removal of residues of four pesticides applied to the crop. Residue reductions ranging 22–53% and 32–90% were observed in the first and second seasons respectively. Average half-lives during this first season were calculated as 21.3 days for diuron, 25.4 days for fluometuron and 26.4 days for aldicarb over the entire wetland. During the second season of monitoring, pesticide half-lives were significantly reduced, with fluometuron exhibiting a half-life of 13.8 days, aldicarb 6.2 days and endosulfan 7.5 days in the open pond. Further significant reductions were observed in the vegetated pond and also following an algal bloom in the open pond, as a result of which aldicarb and endosulfan were no longer quantifiable. Partitioning onto sediment was found to be a considerable sink for the insecticide endosulfan. These results demonstrate that macrophytes and algae can reduce the persistence of pesticides in on-farm water and provide some data for modelling.  相似文献   

10.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

11.
Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation. The gas is in the form of COS which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. To develop such models experimental data are required. A series of experiments was undertaken to determine the rate of deposition, the partition and subsequent loss of sulphur-35 in crops exposed to CO(35)S. The mass normalised deposition rate was similar for the range of crops tested, while the partition of the (35)S paralleled the growth of crop components. There was no significant loss of radioactivity other than that expected from radioactive decay.  相似文献   

12.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

13.
This paper presents phenological weighting factors to be applied to AOT40 (accumulated ozone exposure above a threshold of 40 nl l(-1)) ozone exposure-response relationships for crops at different growth stages. The quantification of such factors represents a step-forward in the derivation of Level II critical levels for ozone. The weighting factors presented are derived from published literature on the sensitivity of wheat (Triticum aestivum), bean (Phaseolus vulgaris) and plantain (Plantago major) to ozone at different growth stages. Weighting functions were calculated using either multiple linear regression or the reciprocal residual mean square (RMS(-1)). The resulting weights were transformed into multiplication factors to be applied to the monthly AOT40 during the 3-month assessment period of critical level exceedance. Interspecific differences were too large to allow for the development of a unified weighting function for the three species considered. For wheat grain yield, the derived multiplication factors varied by almost four-fold (0.40, 1.06, 1.54), while those for bean pod yield varied by only about 25% (0.85, 1.01, 1.14). The available data for plantain were restricted to short-term studies conducted under controlled conditions. These data were not suitable for the derivation of weighting factors comparable to those derived for bean and wheat. Based on known differences in wheat development and phenology across Europe, the need for a geographic differentiation of the time period for the calculation of the critical level exceedances is also discussed and examples provided of the adoption of the derived weightings in the mapping of critical level exceedances. Differences between critical level exceedance maps using weighted and unweighted AOT40 calculations are discussed.  相似文献   

14.
The entry of Pb into the food chain is of concern as it can cause chronic health problems. The concentration of Pb was determined in cereal grain samples collected representatively from British Cereal Quality Surveys in 1982 and 1998 (n = 176, 250 and 233 for wheat collected in 1982 and 1998, and barley in 1998, respectively). In addition, paired soil and grain samples were collected from 377 sites harvested across Britain in 1998-2000. Wheat grain Pb ranged from below the analytical detection limit (0.02 mg kg(-1) dry weight, DW) to 1.63 mg kg(-1) DW, and barley grain Pb from <0.02 to 0.48 mg kg(-1) DW. The vast majority of samples (>99% for both wheat and barley, excluding Scottish barley samples collected in 2000) were well below the newly introduced EU limit for the maximum permissible concentration of Pb in cereals (0.2 mg kg(-1) fresh weight, equivalent to 0.235 mg kg(-1) DW). There was a significant reduction in wheat grain Pb in the 1998 survey compared with the 1982 survey. However, 40 barley samples collected from Scotland in 2000 in the paired soil and crop survey showed anomalously high concentrations of Pb, with 10 samples exceeding the EU limit. Washing experiments demonstrated that surface contamination, introduced during grain harvest and/or storage, was the main reason for the high concentrations in these samples. In the paired soil and crop surveys, there were no significant correlations between grain Pb concentrations with total soil Pb and other soil properties, indicating low bioavailability of Pb in the soils and limited uptake and transport of Pb to grain. The Pb in cereal grain is likely to originate mainly from atmospheric deposition and other routes of surface contamination during harvest and storage.  相似文献   

15.
Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.  相似文献   

16.

This investigation was undertaken to survey the fungal and mycotoxin contamination of South African wheat ranging from that growing in the field to processed wheat products. Samples of wheat were taken from various growing areas in South Africa and screened for fungi and mycotoxins, using a range of methodologies, including chromatography, immunoaffinity/fluorimetry, and cytotoxicity testing. Similar samples were taken from supermarkets and retail outlets in South Africa and analyzed in a similar manner. The result showed that a range of fungi and mycotoxins could be detected in wheat in all these sample types. The major fungal contaminants were Fusarium spp. and their attendant mycotoxins, in particular deoxynivalenol, which is in keeping with the observations made in the rest of the world. An interesting observation was that samples of wheat taken from the field with heavy Fusarium contamination were contaminated with fumonisin B1, which is not normally associated with this crop. Of more concern were the low but persistent levels of mycotoxins and fungi in wheat-based products sold directly to the public.  相似文献   

17.
To determine if trinitrotoluene (TNT) forms nonextractable residues in earthworms and to measure the relative degree of accumulation as compared to TNT and its deaminated metabolites, Eisenia fetida was exposed to 14C-TNT using dermal contact to filter paper or exposure to soil. Nonextractable residues made up 32-68% of total body burden depending on exposure media and depuration time. Parent TNT accounted for less than 3% of radioactivity, while ADNTs accounted for 7-38%. Elimination half-lives were 61-120 h for TNT, ADNTs, and DANTs, which was significantly lower than the half-lives found for nonextractable residues, 201-240 h. However, over 80% of the nonextractable residue was solubilized using weak acid (pH 2). Based on our findings that TNT accumulation occurs primarily as nonextractable residues, which have a longer half-life, and that nonextractable residues can be solubilized, we propose that nonextractable residues could be used as a selective biomarker for assessing TNT contamination.  相似文献   

18.
The elimination half-lives (t1/2) in Sprague-Dawley rats for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2, 3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) and 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin (OCDD) were estimated in long-term studies by Schlatter, Poiger and others. Furthermore, there are some published half-lives of TCDD in adult humans. The average half-life of TCDD in adult humans is approximately 2840 days, while in Sprague-Dawley rats the average t1/2 of TCDD is 19 days. The t1/2 of TCDD in humans is about 150 times that of rats. This factor was used to calculate the t1/2 values of the other polychlorinated dibenzo-p-dioxins (PCDDs) in humans from the rat data. Furthermore, the terminal t1/2 values of PCDDs in adult humans were calculated from the regression equation: logt1/2H = 1.34 logt1/2R + 1.25 which was recently established for 50 xenobiotics (t1/2H = terminal half-lives in days for humans, t1/2R = terminal half-lives in days for rats). The following terminal half-lives in adult humans were obtained: 12.6 years for 1,2,3,7,8-PeCDD, 26-45 years for 1,2,3,4,7,8-HxCDD, 80-102 years for 1,2,3,4,6,7,8-HpCDD and ca. 112-132 years for OCDD. These half-lives of PCDDs are critically compared with measured t1/2 values of PCDDs and other persistent organic pollutants in rats, monkeys and humans.  相似文献   

19.
Soils are the main reservoirs of POPs in mountain ecosystems, but the great variability of the concentrations, also at small scale, leaves some uncertainties in the evaluation of environmental burdens and exposure. The role of the aspect of the mountain side and the seasonal variation in the contamination levels was analysed by means of several soil samples taken from central Italian Alps. A greater contamination content was present in northern soils with a mean ratio between the north vs. south normalised concentration of around a factor of 2 (North-South Enrichment Factor). Experimental factors agreed with theoretical calculations based on temperature-specific calculated Ksa values. From May to November consistent differences in normalised concentrations up to 5-fold were observed. A dynamic picture of the POP contamination in high altitudinal soils is derived from the data in this work, with spring-summer half-lives between 60 and 120 days for most of the compounds.  相似文献   

20.
BACKGROUND: The contamination of soils by heavy metals engenders important environmental and sanitary problems in Northern France where a smelter has been located for more than one hundred of years. It has been one of the most important Pb production sites in Europe until its closedown in March 2003. Ore smelting process generated considerable atmospheric emissions of dust. Despite an active environmental strategy, these emissions were still significant in 2002 with up to 17 tonnes of Pb, 32 tonnes of Zn and 1 tonne of Cd. Over the years, the generated deposits have led to an important contamination of the surrounding soils. Previous studies have shown pollutant transfers to plants, which can induce a risk for human and animal health. The objective of this study was to evaluate the consequences of the smelter closedown on the Cd and Pb contents of wheat (grain and straw) cultivated in the area. METHODS: Paired topsoil and vegetable samples were taken at harvest time at various distances to the smelter. The sample sites were chosen in order to represent a large range of soil metal contamination. Sampling was realised on several wheat harvests between 1997 and 2003. 25 samples were collected before the smelter closedown and 15 after. All ears of about 1 m long of two rows were manually picked and threshed in the lab. Similarly, straw was harvested at the same time. Total metal contents in soil and wheat samples were quantified. RESULTS: A negative correlation between metal concentrations in soil and the distance to the smelter was shown. The wheat grain and straw showed significant Cd and Pb contents. The straw had higher metal contents than the grain. During the smelter activity, the grain contents were up to 0.8 mg kg(-1) DM of Cd and 8 mg kg(-1) DM of Pb. For the straw, maximum contents were 5 mg kg(-1) DM of Cd and 114 mg kg(-1) DM of Pb. After the smelter closedown, we observed a very large decrease of Pb in the grain (82%) and in the straw (91%). A smaller decrease was observed for Cd in grain. Despite this improvement, 80% of the studied samples remained non-acceptable for human consumption, according to the European legislation values, due to a high Cd content. DISCUSSION: Results highlighted a difference in metal accumulation in the plant organs as well as a difference in metal uptake. The approach pointed out the importance of atmospheric fallout in the wheat contamination pathways for Pb. The smelter closedown has lead to a decrease of the Pb content in wheat. It is interesting to relate this finding with the lead blood levels in children living close to the smelter. CONCLUSIONS: Those results have confirmed the importance of dust fallout in the plant contamination pathways. Before the closedown, Pb measured in the plant was principally originating from the smelter dust emissions. It raised the question of the sanitary risks for humans and animals living in the surrounding a of the smelter. RECOMMENDATIONS AND PERSPECTIVES: In the literature, very few articles take the dust deposit as contamination pathways for crops into consideration. However, in highly contaminated sites, this pathway can be very important. Thus, it would be worthy studying the uptake of metal contaminants by plants through the foliar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号