首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.  相似文献   

2.
Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2–4 °C warming and 50–80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical–biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.  相似文献   

3.
This paper systematically reviews the literature on how to reduce nutrient emissions to the Baltic Sea cost-effectively and considerations for allocating these costs fairly among countries. The literature shows conclusively that the reduction targets of the Baltic Sea Action Plan (BSAP) could be achieved at considerably lower cost, if countries would cooperate to implement the least costly abatement plan. Focusing on phosphorus abatement could be prudent as the often recommended measures—wastewater treatment and wetlands—abate nitrogen too. An implication of our review is that the potential for restoring the Baltic Sea to good health is undermined by an abatement strategy that is more costly than necessary and likely to be perceived as unfair by several countries. Neither the BSAP nor the cost-effective solution meet the surveyed criteria for fairness, implying a need for side-payments.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01580-4.  相似文献   

4.
Ecosystem-based management (EBM) has emerged as the generally agreed strategy for managing ecosystems, with humans as integral parts of the managed system. Human activities have substantial effects on marine ecosystems, through overfishing, eutrophication, toxic pollution, habitat destruction, and climate change. It is important to advance the scientific knowledge of the cumulative, integrative, and interacting effects of these diverse activities, to support effective implementation of EBM. Based on contributions to this special issue of AMBIO, we synthesize the scientific findings into four components: pollution and legal frameworks, ecosystem processes, scale-dependent effects, and innovative tools and methods. We conclude with challenges for the future, and identify the next steps needed for successful implementation of EBM in general and specifically for the Baltic Sea.  相似文献   

5.
Ambio - The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different...  相似文献   

6.
7.
Karlson K  Bonsdorff E  Rosenberg R 《Ambio》2007,36(2-3):161-167
This article focuses on the ecological role of benthic macrofauna on nutrient dynamics and benthic-pelagic coupling in the Baltic Sea with relation to eutrophication. Generally, benthic macrofaunal activities have large effects on sediment biogeochemistry and often with stimulatory effects on processes that counteract eutrophication, i.e., denitrification and increased phosphorus retention of the sediment. The degree of faunal impact on such processes varies depending on faunal density and functional group composition. The effect of macrofaunal activities on sediment nutrient dynamics can also result in a higher nitrogen: phosporus ratio of the sediments efflux compared with sediments without macrofauna. Increased internal nutrient loading during eutrophication-induced anoxia is suggested to be caused both by altered sediment biogeochemical processes and through reduced or lost bioturbating macrofauna and thereby a reduced stimulatory effect from their activities on natural purification processes of the Baltic Sea ecosystem.  相似文献   

8.

This study projected the future temperature change for Egypt during the late of this century (2071–2100) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5), by correcting regional climate model (RCM) simulations of average, maximum, and minimum daily temperature with reference to observed data of 26 stations. Four commonly used methods of bias correction have been applied and evaluated: linear scaling, variance scaling, and theoretical and empirical quantile mapping. The compromise programing results of the applied evaluation criteria show that the best method is the variance scaling, and thus it was applied to transfer the correction factor to the projections. All temperature indices are expected to increase significantly under all scenarios and reach the highest record by the end of the century, i.e., the expected increase in average, maximum, and minimum temperature ranges between 4.08–7.41 °C, 4.55–7.89 °C, and 3.88–7.23 °C, respectively. The largest temperature rise will occur in the summer, with the highest increase in the maximum (minimum) temperature of 10.9 °C (10 °C) in July and August under RCP8.5. The maximum (minimum) winter temperature, on the other hand, will drop by a maximum of 2 °C (1.35 °C) under RCP2.6. The Western Desert and Upper Egypt are the regions most affected by climate change, while the northern region of Egypt is the least affected. These findings would help in impact assessment and adaptation strategies and encourage further investigation to evaluate various climate models in order to obtain a comprehensive assessment of the climate change impacts on different hydrometeorological processes in Egypt.

  相似文献   

9.
Climate change effects on river flow to the Baltic Sea   总被引:1,自引:0,他引:1  
Graham LP 《Ambio》2004,33(4-5):235-241
River flow to the Baltic Sea originates under a range of different climate regimes in a drainage basin covering some 1,600,000 km2. Changes to the climate in the Baltic Basin will not only affect the total amount of freshwater flowing into the sea, but also the distribution of the origin of these flows. Using hydrological modeling, the effects of future climate change on river runoff to the Baltic Sea have been analyzed. Four different climate change scenarios from the Swedish Regional Climate Modelling Programme (SWECLIM) were used. The resulting change to total mean annual river flow to the Baltic Sea ranges from -2% to +15% of present-day flow according to the different climate scenarios. The magnitude of changes within different subregions of the basin varies considerably, with the most severe mean annual changes ranging from -30% to +40%. However, common to all of the scenarios evaluated is a general trend of reduced river flow from the south of the Baltic Basin together with increased river flow from the north.  相似文献   

10.
Environmental Science and Pollution Research - Nonpoint source (NPS) pollution is mainly driven by hydrological processes; climate oscillation can affect regional water cycle processes. However,...  相似文献   

11.
This paper compiles biological and chemical sea-ice data from three areas of the Baltic Sea: the Bothnian Bay (Hailuoto, Finland), the Bothnian Sea (Norrby, Sweden), and the Gulf of Finland (Tv?rminne, Finland). The data consist mainly of field measurements and experiments conducted during the BIREME project from 2003 to 2006, supplemented with relevant published data. Our main focus was to analyze whether the biological activity in Baltic Sea sea-ice shows clear regional variability. Sea-ice in the Bothnian Bay has low chlorophyll a concentrations, and the bacterial turnover rates are low. However, we have sampled mainly land-fast level first-year sea-ice and apparently missed the most active biological system, which may reside in deformed ice (such as ice ridges). Our limited data set shows high concentrations of algae in keel blocks and keel block interstitial water under the consolidated layer of the pressure ridges in the northernmost part of the Baltic Sea. In land-fast level sea-ice in the Bothnian Sea and the Gulf of Finland, the lowermost layer appears to be the center of biological activity, though elevated biomasses can also be found occasionally in the top and interior parts of the ice. Ice algae are light limited during periods of snow cover, and phosphate is generally the limiting nutrient for ice bottom algae. Bacterial growth is evidently controlled by the production of labile dissolved organic matter by algae because low growth rates were recorded in the Bothnian Bay with high concentrations of allochthonous dissolved organic matter. Bacterial communities in the Bothnian Sea and the Gulf of Finland show high turnover rates, and activities comparable with those of open water communities during plankton blooms, which implies that sea-ice bacterial communities have high capacity to process matter during the winter period.  相似文献   

12.
The results of application of two nested Eulerian atmospheric transport models for investigation of airborne heavy metal pollution are presented. The distribution and deposition over Europe and Baltic Sea region were simulated for Pb, Cd and Zn for 2 two-months periods: June–July 1997 and February–March 1998. The European-wide calculations were made with the ADOM model from the GKSS Research Centre, and the Baltic regional calculations were made with the HILATAR model from the Finnish Meteorological Institute. The one-way 3-D nesting was used: hourly concentrations from the ADOM model were used by the HILATAR as vertically resolved boundary conditions. Input data for both models were taken from the weather forecast model HIRLAM and UBA/TNO emission inventory. This allows interpreting of some diversity in the calculation results in terms of different internal parameterization and spatial resolution of the models. Simulation results were compared with high-resolution atmospheric measurements carried out at four stations in the southern part of the Baltic Sea for the same period. Manifesting quite good agreement with observations, the models missed several high deposition events of Cd observed at coastal station Hel. Study of this phenomenon enabled to build a 2-D probability function for potential location of the unknown Cd source.  相似文献   

13.
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.  相似文献   

14.
Following decades of international collaboration to restore the Baltic Sea, we provide an assessment of the domestic implementation of measures agreed to limit diffuse agricultural pollution and the patterns of policy instruments applied. Despite the Helsinki Convention being unusually specific in detailing what measures countries should introduce, we find many shortcomings. These are most pronounced in the larger countries (Poland, Germany and Russia), while smaller countries perform better, notably Sweden and Estonia. The patterns of policy instruments applied differ, influenced by domestic politics. The limited use of complementary policy instruments suggests that other priorities overrule full and effective implementation, with engagement mirroring the advantages that a restored Baltic Sea can bring to countries. Using the European Agricultural Fund for Rural Development to support farmers in managing nutrients, particularly advisory services and investments in modern manure management technologies, represents a significant opportunity for reducing agricultural pollution in most countries.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01549-3.  相似文献   

15.
Harvesting beach-cast can help mitigate marine eutrophication by closing land-marine nutrient loops and provide a blue biomass raw material for the bioeconomy. Cost–benefit analysis was applied to harvest activities during 2009–2018 on the island of Gotland in the Baltic Sea, highlighting benefits such as nutrient removal from the marine system and improved recreational opportunities as well as costs of using inputs necessary for harvest. The results indicate that the activities entailed a net gain to society, lending substance to continued funding for harvests on Gotland and assessments of upscaling of harvest activities to other areas in Sweden and elsewhere. The lessons learnt from the considerable harvest experience on Gotland should be utilized for developing concrete guidelines for carrying out sustainable harvest practice, paying due attention to local conditions but also to what can be generalized to a wider national and international context.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01641-8.  相似文献   

16.
The background of this work is the international decision process with regard to the selection of chemicals to be assessed with priority. In order to stress the precautionary principle, mass flows were analysed rather than concentrations, threshold values, etc., as preferred by the chemical legislation (which still excludes the marine area). Lindane, hexachlorobenzene (HCB), trichloroacetic acid and its sodium salt, medium-chained chlorinated paraffins and tributyltin (TBT) were selected due to their great relevance for the marine area. Trichloroacetic acid is an interesting model compound on account of its accidental formation by degradation of volatile chlorinated hydrocarbons and during chlorination processes. In addition, a hypothetical compound was modelled, representing a highly water-soluble substance with low vapour pressure. The balancing area is the Baltic Sea and its catchment area. In order to model the substance flows, the 'Input/Output-load model' has been developed. The model quantifies the shift and the distribution of a yearly load of the substance investigated from the terrestrial-limnic into the marine compartment (Baltic Sea). Water-soluble substances, which are usually considered to be of no concern, may enter the sea in great amounts and, if not degradable, remain there. It turned out to be necessary to take into account remobilisation, unintended formation and point as well as line-sources.  相似文献   

17.
Arsenic occurs as a persistent constituent in many of the chemical weapons dumped into the Baltic Sea; it can be used as an indicator of leakage and dispersal of released munitions to the marine environment. Total arsenic was analysed in sediment samples taken from the Lithuanian economic zone in the Baltic Sea, which included samples from the chemical munitions dumpsite in the Gotland Basin and national monitoring stations in the southeastern Baltic Sea. Arsenic concentrations in sediments ranged from 1.1 to 19.0 mg kg(-1), with an average of 3.4 mg kg(-1). Although there was evidence of slightly elevated arsenic content in sediments near the weapons dumpsite, arsenic concentrations were nevertheless quite low relative to other investigations in the Baltic and North Seas.  相似文献   

18.
Weckström K  Juggins S  Korhola A 《Ambio》2004,33(6):324-327
Successful management of damaged coastal ecosystems requires reliable scientific evidence of their past state. Here we demonstrate that the sediment record of biotic indicators can be used to quantitatively reconstruct nutrient concentrations preceding the short time span covered by monitoring records. We generated a diatom-based weighted-averaging partial least squares transfer function model for total dissolved nitrogen with a prediction accuracy of 0.09 microg L(-1) (log10 units). The model was applied to sediment core data from Laajalahti Bay, an urban embayment in Helsinki, Finland, where its performance was validated against a approximately 30 yr record of water-quality data and known land-use changes in the watershed. The model tracked well the trends in the nutrient record, although it underestimated very high nutrient concentrations in this highly impacted embayment. The generally good agreement between the actual and predicted values implies that the approach has considerable potential in assessing background nutrient concentrations in coastal waters.  相似文献   

19.
Sigray P  Lundberg P 《Ambio》2004,33(4-5):267-274
Direct measurements of the potential induced by motion of electrically conducting seawater through the earth's magnetic field may be used to estimate ocean transports. For the purpose of evaluating the feasibility of monitoring the Baltic climate, a number of temporary observational systems based on this principle have been established around the Swedish coast. Some results from these investigations are presented, and the study is concluded by an outlook towards the prospects for future work along these lines.  相似文献   

20.
Meier HE  Döscher R  Halkka A 《Ambio》2004,33(4-5):249-256
Sea-ice in the Baltic Sea in present and future climates is investigated. The Rossby Centre Regional Atmosphere-Ocean model was used to perform a set of 30-year-long time slice experiments. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, one control run (1961-1990) and two scenario runs (2071-2100) based upon the SRES A2 and B2 emission scenarios were conducted. The future sea-ice volume in the Baltic Sea is reduced by 83% on average. The Bothnian Sea, large areas of the Gulf of Finland and Gulf of Riga, and the outer parts of the southwestern archipelago of Finland will become ice-free in the mean. The presented scenarios are used to study the impact of climate change on the Baltic ringed seal (Phoca hispida botnica). Climate change seems to be a major threat to all southern populations. The only fairly good winter sea-ice habitat is found to be confined to the Bay of Bothnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号