首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change effects on river flow to the Baltic Sea   总被引:1,自引:0,他引:1  
Graham LP 《Ambio》2004,33(4-5):235-241
River flow to the Baltic Sea originates under a range of different climate regimes in a drainage basin covering some 1,600,000 km2. Changes to the climate in the Baltic Basin will not only affect the total amount of freshwater flowing into the sea, but also the distribution of the origin of these flows. Using hydrological modeling, the effects of future climate change on river runoff to the Baltic Sea have been analyzed. Four different climate change scenarios from the Swedish Regional Climate Modelling Programme (SWECLIM) were used. The resulting change to total mean annual river flow to the Baltic Sea ranges from -2% to +15% of present-day flow according to the different climate scenarios. The magnitude of changes within different subregions of the basin varies considerably, with the most severe mean annual changes ranging from -30% to +40%. However, common to all of the scenarios evaluated is a general trend of reduced river flow from the south of the Baltic Basin together with increased river flow from the north.  相似文献   

2.
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.  相似文献   

3.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure.  相似文献   

4.
In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable palaeoenvironmental reconstructions that will, ultimately, contribute to better predictions for this High Arctic ecosystem in a warming climate.  相似文献   

5.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   

6.
The microbial part of the pelagic food web is seldom characterized in models despite its major contribution to biogeochemical cycles. In the Baltic Sea, spatial and temporal high frequency sampling over three years revealed changes in heterotrophic bacteria and phytoplankton coupling (biomass and production) related to hydrographic properties of the ecosystem. Phyto- and bacterioplankton were bottom-up driven in both coastal and offshore areas. Cold winter temperature was essential for phytoplankton to conform to the successional sequence in temperate waters. In terms of annual carbon production, the loss of the spring bloom (diatoms and dinoflagellates) after mild winters tended not to be compensated for by other taxa, not even summer cyanobacteria. These results improve our ability to project Baltic Sea ecosystem response to short- and long-term environmental changes.  相似文献   

7.
Arne Eide 《Ambio》2017,46(3):387-399
Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets’ fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC’s SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.  相似文献   

8.
9.
Environmental Science and Pollution Research - Nanotechnology has opened up a plethora of opportunities and has acquired extreme importance in a myriad of fields to produce enhanced materials....  相似文献   

10.
11.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

12.
The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.  相似文献   

13.
The drifting sea ice has been suggested as important in the transport and concentration of organic matter and pollutants in the Arctic. We collected sea ice-associated amphipods in the marginal ice zone north of Svalbard and in the Fram Strait in September 1998 and 1999 to assess contaminant accumulation in ice-associated organisms. Organochlorine concentrations increased from the more herbivorous Apherusa glacialis to the more carnivorous Gammarus wilkitzkii and the more necrophagous Onisimus spp. The relative contribution of compound classes to the sum of organochlorines differed between the amphipod families, with a higher relative contribution of hexachlorocyclohexanes (HCHs) in A. glacialis. The composition of the compound classes HCHs. chlordanes and dichlorodiphenyltrichloroethanes (DDTs) was similar between the amphipod families, whereas the profiles of polychlorinated biphenyls (PCBs) differed. The occurrence of organochlorines differed spatially, with higher alpha-HCH concentrations in amphipods from the Fram Strait in comparison with amphipods collected north of Svalbard. This could be related to the sea ice drift route, since sea ice in the Fram Strait had a drift route across the central Arctic Ocean, while the sea ice north of Svalbard had a western drift route to the sampling stations. Even though marine invertebrates have direct uptake by passive diffusion of contaminants across their gills. our results imply that the species' ecology such as diet is important in the bioaccumulation process of organic pollutants. In addition, the results show that sea ice drift route influences the concentrations of organochlorine pollutants in ice-associated organisms.  相似文献   

14.
General effects of climate change on Arctic fishes and fish populations   总被引:3,自引:0,他引:3  
Projected shifts in climate forcing variables such as temperature and precipitation are of great relevance to arctic freshwater ecosystems and biota. These will result in many direct and indirect effects upon the ecosystems and fish present therein. Shifts projected for fish populations will range from positive to negative in overall effect, differ among species and also among populations within species depending upon their biology and tolerances, and will be integrated by the fish within their local aquascapes. This results in a wide range of future possibilities for arctic freshwater and diadromous fishes. Owing to a dearth of basic knowledge regarding fish biology and habitat interactions in the north, complicated by scaling issues and uncertainty in future climate projections, only qualitative scenarios can be developed in most cases. This limits preparedness to meet challenges of climate change in the Arctic with respect to fish and fisheries.  相似文献   

15.
M. Soler  J.O. Grimalt  J. Albaiges   《Chemosphere》1989,18(9-10):1809-1819
The qualitative distributions of aliphatic hydrocarbons in mussels adhered to the legs of an oil production platform (Amposta, Western Mediterranean) have evidenced local (diesel oil) and chronic inputs (middle East crude oils) as the main pollutant sources in the area. Quantitative data have shown that aromatic hydrocarbons are selectively accumulated with the age of mussels and are more evenly distributed through the water column. Background concentrations of petrogenic aliphatic hydrocarbons in mussels living in the vicinity of oil platforms have been established in the range of 25–40 ug/g dry weight.  相似文献   

16.
Reactive nitrogen and the world: 200 years of change   总被引:16,自引:0,他引:16  
Galloway JN  Cowling EB 《Ambio》2002,31(2):64-71
This paper examines the impact of food and energy production on the global N cycle by contrasting N flows in the late-19th century with those of the late-20th century. We have a good understanding of the amounts of reactive N created by humans, and the primary points of loss to the environment. However, we have a poor understanding of nitrogen's rate of accumulation in environmental reservoirs, which is problematic because of the cascading effects of accumulated N in the environment. The substantial regional variability in reactive nitrogen creation, its degree of distribution, and the likelihood of increased rates of reactive-N formation (especially in Asia) in the future creates a situation that calls for the development of a Total Reactive Nitrogen Approach that will optimize food and energy production and protect environmental systems.  相似文献   

17.
In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.  相似文献   

18.
The assessment of climate change impacts on agriculture has emerged as a recognizable field of research over the past 15 years or so. In a relatively short period, this area of work has undergone a number of important conceptual and methodological developments. Among many questions that have been debated are the adaptability of agriculture to climate change and the importance of land management adjustments in reducing the adverse effects of climate change. In turn, this latter focus has spawned a discussion regarding the nature of adaptation and the ability of agriculture to respond to sudden and rapid climatic changes. In this paper we present an overview of this debate. It is argued that the first generation of climate change impact studies generally ignored the possibility that agriculturalists may adjust their farming practices in order to cope with climate change or to take advantage of new production opportunities. This conceptual oversight has been largely eliminated over the past five years or so. However, questions remain surrounding the likelihood that various adaptive strategies will actually be deployed in particular places. In this paper, we stress the importance of studying adaptation in the context of decision-making at the individual farm level and beyond.  相似文献   

19.
Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less clear for reduced and oxidized nitrogen. In fact there are positive trends for nitrogen compounds in air at several stations. Acidity is generally reduced at many stations while the precipitation amount is either increasing or stable. Variability of sulphate concentrations in air for the period 1991–2000 is reasonably well reproduced at most stations using an Eulerian, hemispherical model. Results for nitrogen compounds are weaker. Scenario studies show that even if large sulphur emission reductions take place in important source regions in South-East Asia in the coming decades, only small changes in Arctic deposition can be expected. This is because South-East Asian emissions have small influence north of the Arctic circle.  相似文献   

20.
In this study, emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin are predicted (with uncertainty estimates) from 2015–2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010–2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010–2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015–2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards.

Implications: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号