首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.  相似文献   

2.
The objective of this paper is to characterize the spatiotemporal variations of vegetation phenology along latitudinal and altitudinal gradients in Greenland, and to examine local and regional climatic drivers. Time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) were analyzed to obtain various phenological metrics for the period 2001–2015. MODIS-derived land surface temperatures were corrected for the sampling biases caused by cloud cover. Results indicate significant differences between West and East Greenland, in terms of both observed phenology during the study period, as well as the climatic response. The date of the start of season (SOS) was significantly earlier (24 days), length of season longer (25 days), and time-integrated NDVI higher in West Greenland. The sea ice concentration during May was found to have a significant effect on the date of the SOS only in West Greenland, with the strongest linkage detected in mid-western parts of Greenland.  相似文献   

3.
The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

4.
Soil moisture and organic matter level affects soil respiration and microbial activities, which in turn impact greenhouse gas (GHG) emissions. This study was conducted to evaluate the effect of irrigation levels (75% [deficit], 100% [full], and 125% [excess] of reference crop evapotranspiration requirements), and organic amendments (OA) type (chicken manure [CM] and bone meal [BM]) and OA application rates (0,168, 336 and 672 kg total N ha?1) on (i) soil physical properties (bulk density, organic matter content and soil moisture content) and (ii) soil carbon dioxide (CO2) emissions from a highly weathered tropical Hawai'ian soil. Carbon dioxide readings were consistently taken once or twice a week for the duration of the cropping season. A drip irrigation system was used to apply the appropriate amount of irrigation water to the treatment plots. Treatments were randomly selected and corresponding organic amendments were manually incorporated into the soil. Plots were cultivated with sweet corn (Zea mays ‘SS-16’). Soil moisture content within and below the rootzone was monitored using a TDR 300 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL, USA) connected with 12 cm long prongs. Soil bulk density and organic matter content were determined at the end of the cropping season. Analysis of variance results revealed that OA type, rate, and their interaction had significant effect on soil CO2 flux (P < 0.05). Among the OA rates, all CM mostly resulted in significantly higher soil CO2 fluxes compared to BM and control treatment (p < 0.05). The two highest rates of BM treatment were not significantly different from the control with regard to soil CO2 flux. In addition, organic amendments affected soil moisture dynamics during the crop growing season and organic matter content measured after the crop harvest. While additional studies are needed to further investigate the effect of irrigation levels on soil CO2 flux, it is recommended that in order to minimize soil CO2 emissions, BM soil amendments could be a potential option to reduce soil CO2 fluxes from agricultural fields similar to the one used in this study.  相似文献   

5.
Urban vegetation increasingly plays an important role in the improvement of the urban atmospheric environment. This paper deals with the dust retention capacities of four urban tree species (Ficus virens var. sublanceolata, Ficus microcarpa, Bauhinia blakeana, and Mangifera indica Linn) in Guangzhou. The dust-retaining capacities of four tree species are studied under different pollution intensities and for different seasons. Remote sensing imagery was used to estimate the total aboveground urban vegetation biomass in different functional areas of urban Guangzhou, information that was then used to estimate the dust-retaining capacities of the different functional areas and the total removal of airborne particulates in urban Guangzhou by foliage. The results showed that urban vegetation can remove dust from the atmosphere thereby improving air quality. The major findings are that dust retention, or capture, vary between the four species of tree studied; it also varied between season and between types of urban functional area, namely industrial, commercial/road traffic, residential, and clean areas. Dust accumulation over time was also studied and reached a maximum, and saturation, after about 24 days. The overall aboveground biomass of urban vegetation in Guangzhou was estimated to be 52.0?×?105 t, its total leaf area 459.01 km2, and the dust-retaining capacity was calculated at 8012.89 t per year. The present study demonstrated that the foliage of tree species used in urban greening make a substantial contribution to atmospheric dust removal and retention in urban Guangzhou.  相似文献   

6.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

7.
Dufulin is a newly developed antiviral agent (or pesticide) that activates systemic acquired resistance of plants. This pesticide is widely used in China to prevent abroad viral diseases in rice, tobacco and vegetables. In this study, the potential impacts such as soil type, moisture, temperature, and other factors on Dufulin degradation in soil were investigated. Degradation of Dufulin followed the first-order kinetics. The half-life values varied from 2.27 to 150.68 days. The dissipation of Dufulin was greatly affected by soil types, with DT50 (Degradation half time) varying between 17.59, 31.36, and 43.32 days for Eutric Gleysols, Cumulic Anthrosols, and Dystric Regosols, respectively. The elevated moisture accelerated the decay of Dufulin in soil. Degradation of Dufulin increased with temperature and its half-life values ranged from 16.66 to 42.79 days. Sterilization of soils and treatment with H2O2 resulted in a 6- and 8-fold decrease in degradation rates compared to the control, suggesting that Dufulin degradation was largely governed by microbial processes. Under different light spectra, the most effective degradation occurred with 100-W UV light (DT50?=?2.27 days), followed by 15-W UV light (DT50?=?8.32 days) and xenon light (DT50?=?14.26 days). Analysis by liquid chromatography-mass spectroscopy (LC-MS) revealed that 2-amino-4-methylbenzothiazole was one of the major decayed products of Dufulin in soils, suggesting that elimination of diethyl phosphate and 2-fluorobenzaldehyde was most like the degradation pathway of Dufulin in Eutric Gleysols.  相似文献   

8.
Agricultural crops have a long history of being irrigated with recycled wastewater (RW). However, its use on vegetable crops has been of concern due to the potential prevalence of microcontaminants, such as pharmaceuticals and personal care products (PPCPs) in the latter, which represents a possible health hazard to consumers. We investigated the uptake of three PPCPs (atenolol, diclofenac, and ofloxacin), at three different concentrations in irrigation water (0.5, 5, and 25 μg L?1) in relation to three varying volumetric soil moisture depletion levels of 14 % (?4.26 kPa), 10 % (?8.66 kPa), and 7 % (?18.37 kPa) by various vegetable crop species. Experiments were conducted in a split-split block completely randomized design. PPCPs were extracted using a developed method of accelerated solvent extraction and solid phase extraction and analyzed via liquid chromatography mass spectrometry (LCMS). Results indicate that all treated crops were capable of PPCP uptake at nanogram per gram concentrations independent of the applied soil moisture depletion levels and PPCP concentrations. Ofloxacin was the chemical with the highest uptake amounts, followed by atenolol and then diclofenac. Although the results were not statistically significant, higher concentrations of PPCPs were detected in plants maintained under higher soil moisture levels of 14 % (?4.26 kPa).  相似文献   

9.
Climate change effects on hydroecology of arctic freshwater ecosystems   总被引:2,自引:0,他引:2  
In general, the arctic freshwater-terrestrial system will warm more rapidly than the global average, particularly during the autumn and winter season. The decline or loss of many cryospheric components and a shift from a nival to an increasingly pluvial system will produce numerous physical effects on freshwater ecosystems. Of particular note will be reductions in the dominance of the spring freshet and changes in the intensity of river-ice breakup. Increased evaporation/evapotranspiration due to longer ice-free seasons, higher air/water temperatures and greater transpiring vegetation along with increase infiltration because of permafrost thaw will decrease surface water levels and coverage. Loss of ice and permafrost, increased water temperatures and vegetation shifts will alter water chemistry, the general result being an increase in lotic and lentic productivity. Changes in ice and water flow/levels will lead to regime-specific increases and decreases in habitat availability/quality across the circumpolar Arctic.  相似文献   

10.
Factors affecting ammonia volatilisation from a rice-wheat rotation system   总被引:6,自引:0,他引:6  
Tian G  Cai Z  Cao J  Li X 《Chemosphere》2001,42(2):123-129
Some of the major factors influencing ammonia volatilisation in a rice wheat rotation system were studied. A continuous airflow enclosure method was used to measure NH3 volatilisation in a field experiment at an agricultural college in Jiangsu Province. The five treatments comprised application rates of 0, 100, 200 or 300 kg N ha(-1) as urea, per growing season with rice straw amendment when wheat was sown, and 200 kg N ha(-1) without rice straw amendment. There were three replicates in a randomised block design. Ammonia volatilisation was measured immediately after urea application in the three consecutive years 1995 to 1997. The results show that N losses through NH3 volatilisation accounted for 4-19% of N applied during the wheat growing season and for 5-11% during the rice growing season. Ammonia volatilisation was affected significantly by soil moisture and temperature before and after fertiliser application during the wheat growing season. The ratio of volatilised NH3-N to applied N after urea application during the rice growing season was as follows: top-dressing at the onset of tillering > top-dressing at the start of the booting stage > basal fertilization. The results also show that the amount of N lost through NH3 volatilisation increased with increasing N application rate, but the ratio to applied N was not affected significantly by N application rate. Amendment with rice straw had no significant effect on NH3 volatilisation.  相似文献   

11.
Increasing risk for negative ozone impacts on vegetation in northern Sweden   总被引:1,自引:0,他引:1  
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season.  相似文献   

12.
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ?=?365 nm) whereas they became 2.63 h when exposed to visible light (λ?>?400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.  相似文献   

13.
Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.  相似文献   

14.
Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.  相似文献   

15.
The annual water level regulating of the Three Gorges Reservoir prolonged the submerged duration (from 2 to 8 months) and resulted in the reversal of natural flood rhythms (winter submerged). These changes might alter plant community characteristics in the water level fluctuation zone (WLFZ). The aim of this study was to determine the plant community characteristics in the WLFZ and their responses to the environmental factors (i.e., annual hydrological regulation, topographic characteristics, soil physical properties and soil nutrients). The height, coverage, frequency and biomass of each plant species and the soil properties at each elevation zone (150, 155, 160, 165 and 170 m) were measured from March to September in 2010. Univariate two-factor analysis and redundancy analysis (RDA) were used to analyze the spatial and temporal variations of the community characteristics and identify the key environmental factors influencing vegetation. We found that 93.2 % of the species analysed were terrestrial vascular plants. Annual herbs made up the highest percentage of life forms at each altitude. The differences in the species number per square metre, the Shannon–Wiener diversity index and the biomass of vegetation demonstrated statistical significance with respect to sampling time but not elevation. The most dominant species at altitudes of 150, 155, 160, 165 and 170 m were Cynodon dactylon, Cyperus rotundus, Digitaria sanguinalis, Setaria viridis and Daucus carota, respectively. The concentrations of soil nutrients appeared to be the lowest at an altitude of 150 m, although the differences with respect to elevation were not significant. The results of the RDA indicated that the key factors that influenced the species composition of vegetation were elevation, slope, pH and the concentration of soil available phosphorus.  相似文献   

16.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   

17.
In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50 % decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L–1 for 72 h and 9.4–28.5 μg L–1 for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L–1 after 72 h. Inhibition rates was significantly increased with decreased water temperature (P?<?0.01). Intracellular H2O2 levels as an indicator of oxidative stress were also decreased with increasing temperature in both control and diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P?<?0.01). Our results suggest water temperatures may affect the toxicokinetics of diuron in freshwater and should therefore be considered in environmental risk assessment.  相似文献   

18.
Mineralization studies of natural steroid hormones (e.g., 17β-estradiol, E2) are performed in environmental incubators, usually under a constant temperature such as 20°C. In this paper, we present a microcosm protocol that quantified the mineralization of E2 in soils under field temperatures. The nine agricultural soils tested had a wide range of soil organic carbon (1.1 to 5.2%) and clay (9 to 57%) contents. The calculated time over which half of the applied E2 was mineralized (E2-½) ranged from 299 to 910 d, and total E2 mineralization at 48 d (E2-TOT48) ranged from 4 to 13%. In subsequent laboratory incubations, the same soils were incubated under a constant temperature of 20°C, as well as under cyclic temperatures of 14.5°C (14 h) and 11.5°C (10h), which was within the temperature extremes observed in the field microcosms. E2-½ ranged from 157 to 686 d at 20°C and from 103 to 608 d at the cyclic temperatures, with the E2-TOT48 ranging from 6 to 21% at 20°C and from 7 to 30% under cyclic temperatures. Despite the overall 6.75°C lower mean temperatures under the cyclic versus constant temperatures, E2 mineralization was stimulated by the temperature cycles in three soils. Regardless of the incubation, the same loamy sand soil always showed larger E2 mineralization than the other eight soils and this loamy sand soil also had the smallest E2 sorption. Current modeling approaches do not take into consideration the effects of temperature fluctuations in the field because the input parameters used to describe degradation are derived from laboratory incubations at a constant temperature. Across the eight soils, E2-½ was on average 1.7 times larger and E2-TOT48 was on average 0.8 times smaller under field temperatures than under a constant 20°C. Hence, we conclude that incubations at 20°C give a reasonable representation of E2 mineralization occurring under field conditions to be expected in a typical Prairie summer season.  相似文献   

19.
Abstract

A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of α and β endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg?1. The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for α and β endosulfan isomers by gas chromatography. The results indicated that the half-life (T ½) of α-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T ½ of β-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T ½ was about 115 days for the other three treatments.  相似文献   

20.
Aircraft de-icing fluids (ADF) are a source of water and soil pollution in airport sites. Propylene glycol (PG) is a main component in several commercial formulations of ADFs. Even though PG is biodegradable in soil, seasonal overloads may result in occasional groundwater contamination. Feasibility studies for the biostimulation of PG degradation in soil have been carried out in soil slurries, soil microcosms and enrichment cultures with and without the addition of nutrients (N and P sources, oligoelements), alternative electron acceptors (nitrate, oxygen releasing compounds) and adsorbents (activated carbon). Soil samples have been taken from the contaminated area of Gardermoen Airport Oslo. Under aerobic conditions and in the absence of added nutrients, no or scarce biomass growth is observed and PG degradation occurs by maintenance metabolism at constant removal rate by the original population of PG degraders. With the addition of nutrient, biomass exponential growth enhances aerobic PG degradation also at low temperatures (4 ° C) that occur at the high season of snowmelt. Anaerobic PG degradation without added nutrients still proceeds at constant rate (i.e. no biomass growth) and gives rise to reduced fermentation product (propionic acid, reduced Fe and Mn, methane). The addition of nitrate does not promote biomass growth but allows full PG mineralization without reduced by-products. Further exploitation on the field is necessary to fully evaluate the effect of oxygen releasing compounds and adsorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号