首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use has obvious influence on surface water quality; thus, it is important to understand the effects of land use patterns on surface water quality. This study explored the relationships between land use patterns and stream nutrient levels, including ammonium-N (NH4 +-N), nitrate-N (NO3 ?-N), total N (TN), dissolved P (DP), and total P (TP) concentrations, in one forest and 12 agricultural catchments in subtropical central China. The results indicated that the TN concentrations ranged between 0.90 and 6.50 mg L?1 and the TP concentrations ranged between 0.08 and 0.53 mg L?1, showing that moderate nutrient pollution occurred in the catchments. The proportional areal coverages of forests, paddy fields, tea fields, residential areas, and water had distinct effects on stream nutrient levels. Except for the forest, all studied land use types had a potential to increase stream nutrient levels in the catchments. The land use pattern indices at the landscape level were significantly correlated to N nutrients but rarely correlated to P nutrients in stream water, whereas the influence of the land use pattern indices at the class level on stream water quality differentiated among the land use types and nutrient species. Multiple regression analysis suggested that land use pattern indices at the class level, including patch density (PD), largest patch index (LPI), mean shape index (SHMN), and mean Euclidian nearest neighbor distance (ENNMN), played an intrinsic role in influencing stream nutrient quality, and these four indices explained 35.08 % of the variability of stream nutrient levels in the catchments (p<0.001). Therefore, this research provides useful ideas and insights for land use planners and managers interested in controlling stream nutrient pollution in subtropical central China.  相似文献   

2.
The long-term impacts of current forest management methods on surface water quality in Fennoscandia are largely unexplored. We studied the long-term effects of clear-cutting and site preparation on runoff and the export of total nitrogen (total N), total organic nitrogen (TON), ammonium (NH4-N), nitrate (NO3-N), total phosphorus (total P), phosphate (PO4-P), total organic carbon, and suspended solids (SS) in three paired-catchments in Eastern Finland. Clear-cutting and soil preparation were carried out on 34 % (C34), 11 % (C11), and 8 % (C8) of the area of the treated catchments and wide buffer zones were left along the streams. Clear-cutting and soil preparation increased annual runoff and total N, TON, NO3-N, PO4-P, and SS loads, except for SS, only in C34. Runoff increased by 16 % and the annual exports of total N, TON, NO3-N, and PO4-P by 18, 12, 270, and 12 %, respectively, during the 14-year period after clear-cutting. SS export increased by 291 % in C34, 134 % in C11, and 16 % in C8 during the 14, 6, and 11-year periods after clear-cutting. In the C11 catchment, NO3-N export decreased by 12 %. The results indicate that while current forest management practices can increase the export of N, P and SS from boreal catchments for many years (>10 years), the increases are only significant when the area of clear cutting exceeds 30 % of catchment area.  相似文献   

3.
Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l?1 in 1990 to 98 μg 1?1 in 2008, while PO4-P increased from 4 μg l?1 in 1990 to 57 μg l?1 in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.  相似文献   

4.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

5.
Abstract

The hydrolysis of the insecticide tebufenozide was studied in the dark at 20 to 40°C in buffered (pH 4 to 10) distilled water, and at 20°C in unbuffered, sterilized and unsterilized stream water. Tebufenozide was very stable in acidic and neutral buffers at 20°C and the corresponding pseudo‐first‐order rate constants (kobsd) and half‐lives (T1/2) were 5.946 × 10‐4 and 13.10 × 10‐4 d‐1, and 1166 and 529 d, respectively. The hydrolytic degradation was dependent on pH and temperature. At pH 10 and at 20,30 and 40°C, the kobsd (10‐4 d‐1) and T1/2 (d) values were 34.22, 66.72 and 130.0; and 203, 104 and 53.3, respectively. The energy of activation (Ea) values for the hydrolysis of tebufenozide at pH 4, 7 and 10, calculated from the Arrhenius plots, were 83.50, 66.71 and 50.87 kJ/mol, respectively. Tebufenozide was stable in sterilized stream water in the dark (T1/2 = 734 d) but it degraded fairly rapidly in unsterilized stream water (T1/2 = 181 d). Sunlight photodegradation of the chemical was slower (T1/2 = 83.0 h) than the photolysis by ultraviolet radiations (T1/2 values at 254 and 365 nm were 9.92 and 27.6 h, respectively); nevertheless, it was still appreciable during the summer months at 46°31’ N latitude. The differences in degradation rates between the unsterilized and sterilized stream water and the degradation of the chemical in the sterile, distilled water in sunlight, suggests that microbial processes and photolysis are the two main degradative routes for tebufenozide in natural aquatic systems.  相似文献   

6.
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 2?/Al3 + mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5?×?105 to 20?×?105 Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r?=?0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L?1), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS–PDADMAC treatment (0.8 mg L?1?+?20 mg L?1). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.  相似文献   

7.
Many rivers in China and other newly industrialized countries have suffered from severe degradation of water quality in the context of rapid economic growth. An accounting method was developed to investigate the source and mass fluxes of the main contaminants in the Ziya River, a severely polluted and heavily modified river in a semiarid area of the North China Plain, where chemical oxygen demand (COD) and ammonia nitrogen (NH4-N) were the most important indicators of pollution. The results showed that the urban sewage with high concentration of COD and NH4-N dominated the streams, contributing to 80.7 % of the streamflow, 92.2 % of COD, and 94.5 % of NH4-N. The concentrations of COD and NH4-N in streams varied from 24.0–195.0 to 5.8–43.8 mg/L, respectively. Mass fluxes of COD and NH4-N of all pathways were quantified. Much of the polluted water was diverted to irrigation, and some eventually flowed into the Bohai Sea. Installation of adequate wastewater treatment facilities and making strict discharge standards can help improve the water quality. Our findings imply that a simple accounting method provides an extremely well-documented example for load estimation and can be useful for intervention strategies in heavily polluted and modified rivers in newly industrialized countries.  相似文献   

8.
Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 +) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 + on L. minor biomass accumulation was investigated using NH4 + as sole source of nitrogen (N). NH4 +-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 +-N) after a 7-day cultivation. L. minor exposed to the NH4 +-N concentration of 840 mg l?1 exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 +-N concentrations of 7–84 mg l?1 and the optimal NH4 +-N concentration was 28 mg l?1.  相似文献   

9.
The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m?2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.  相似文献   

10.
The sulfur–limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3 ?), and influent PO4 3? concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3 ?-N of 30 mg L?1 and PO4 3?-P of 15 mg L?1, the SLAD biofilter removed phosphorus of 45 % when the HRT was 6 h, in addition with TN removal of nearly 100 %. The optimal phosphorus removal in the SLAD biofilter was around 60 %. For the synthetic wastewater containing a PO4 3?-P concentration of 15 mg L?1, the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.  相似文献   

11.
Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4 +-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50–60 % removal could be achieved at the highest N concentration of 1000 mg L?1 at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5–10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05–0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca2+, Mg2+, protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2 ?-N and NO3 ?-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.  相似文献   

12.
Studying the toxic risk of pesticide exposure to ladybird beetles is important from an agronomical and ecological perspective since larval and adult ladybirds are dominant predators of herbivorous pest insects (e.g., aphids) in various crops in China. This article mainly deals with the long-term effects of a single application of the insect growth regulator hexaflumuron on Coccinella septempunctata. A 72-h and a 33-day toxicity test with hexaflumuron (single application) were performed, starting with the second instar larvae of C. septempunctata. Exposure doses in the long-term experiment were based on the estimated 72-h acute LR50 (application rate causing 50 % mortality) value of 304 g active ingredient (a.i.) ha?1 for second instar larvae of C. septempunctata. The long-term test used five hexaflumuron doses as treatment levels (1/50, 1/100, 1/200, 1/400, and 1/800 of the 72-h acute LR50), as well as a solvent control and blank control treatment. The measurement endpoints used to calculate no observed effect application rates (NOERs) included development time, hatching, pupation, adult emergence, survival, and number of eggs produced. Analyzing the experimental data with one-way analysis of variance showed that the single hexaflumuron application had significant effects on C. septempunctata endpoints in the 33-day test, including effects on development duration (NOER 1.52 g a.i. ha?1), hatching (NOER 3.04 g a.i. ha?1), pupation (NOER 3.04 g a.i. ha?1), and survival (NOER 1.52 g a.i. ha?1). These NOERs are lower than the reported maximum field application rate of hexaflumuron (135 g a.i. ha?1) in cotton cultivation, suggesting potential risks to beneficial arthropods.  相似文献   

13.
The particle formation and growth events observed at a semirural background site in Denmark were analyzed based on particle number size distribution data collected during the period from February 2005 to December 2010. The new particle formation (NPF) events have been classified visually in detail according to 3D daily plots in combination with an automatic routine. A clear seasonal variation was found in the way that events occurred more frequently during the warm season from May to September and especially in June. The mean values of the apparent 6 nm particle formation rates, the growth rate and the condensation sink were about 0.36 cm?3 s?1, 2.6 nm h?1, 4.3?×?10?3 s?1, respectively. A positive relationship of oxidation capacity (OX?=?O3?+?NO2) of the atmosphere and the appearance of NPF events was found indicating that the oxidation of the atmosphere was linked to the formation of new particles. An analysis of a 3-day backward trajectories revealed that NW air masses from the North Sea were giving the highest probability of NPF events, namely between 20 and 40 %.  相似文献   

14.
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N2O emissions. However, the key factors controlling this process as well as N2O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N2 and N2O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N2 and N2O production were strongly associated with the addition of NO3 ?-N and NH4 +-N. Specifically, NO3 ?-N controlled net N2 production following Michaelis–Menten kinetics. The maximum rate of net N2 production (V max) was 116.3 μmol N2-N m?2 h?1, and the apparent half-saturation concentration (k m) was 0.65 mg N L?1. N2O to N2 ratios increased from 0.18?±?0.03 to 0.68?±?0.16 with the addition of NO3 ?-N, suggesting that increasing NO3 ?-N concentrations favored the production of N2O more than N2. The addition of acetate enhanced net N2 production and N2O to N2 ratios, but the ratios decreased by about 59.5 % when acetate concentrations increased from 50 to 100 mg C L?1, suggesting that the increase of N2O to N2 ratios had more to do with the net N2 production rate rather than acetate addition in this experiment. The addition of Cl? did not affect the net N2 production rates, but significantly enhanced N2O to N2 ratios (the ratios increased from 0.02?±?0.00 to 0.10?±?0.00), demonstrating that the high salinity effect might have a significant regional effect on N2O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N2O to N2 ratios.  相似文献   

15.
The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 ?-N and NH4 +-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099?~?33.23 ng N2O-N g?1 h?1) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 ?-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 ?-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.  相似文献   

16.
Following the technical closure of the brown lignite Meirama mine (NW Spain) in April 2008, the reclamation of the mined area is being accomplished with the controlled flooding of its large pit. During the first 7 months of flooding, the sequential arrest of the ground water dewatering system led to the growth of an acidic water body of about 2 hm3. Since October 2008, the surface waters from some local streams have been diverted towards the pit so that these have become the major water input in the flooding process. Surface water has promoted a major change in the chemical composition of the lake water so that, at present, its surface has a circum neutral pH, net alkalinity, and low conductivity. At present, the lake has slightly more than one half of its final volume, and it is expected the overflow in 3 to 3.5 years. The lake is meromictic, with a sharp chemocline separating the acidic monimolimnion (pH?≈?3.2, acidity?≈?150 mg CaCO3/L, κ 25?≈?2.4 mS/cm) from the main water body (pH?≈?6.5, alkalinity?≈?15 mg CaCO3/L, κ 25?≈?0.3 mS/cm). Oxygen is being depleted at the bottom of the lake so that the monimolimnion became anoxic in January 2011. Above the chemocline, the composition of the lake is similar, but not identical, to that of the flooding stream waters. Close to the surface, some constituents (pH, metals) show strong seasonal variations in coincidence with the phytoplankton growing periods. Those parameters whose limits are legally prescribed comply with the corresponding water quality standards, and they are also consistent with the forecasting results obtained in early modeling. At present, a project considering the construction of an uptake tunnel to exploit the lake is being developed for the emergency water supply of the metropolitan area of A Coruña.  相似文献   

17.
The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V?m?1) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (?1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g?h?1). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern.  相似文献   

18.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

19.
Mercury (Hg) mobility at the sediment–water interface was investigated during a laboratory incubation experiment conducted with highly contaminated sediments (13 μg g-1) of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia) mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed and can influence the Hg biogeochemical behavior, a redox oscillation was simulated in the laboratory, at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg (DHg) and methylmercury (MeHg), O2, NH4 +, NO3 - + NO2 -, PO4 3-, H2S, dissolved Mn2+, dissolved inorganic and organic carbon (DIC and DOC). Under anoxic conditions, both Hg (665 ng m2 day-1) and MeHg (550 ng m2 day-1) fluxed from sediments into the water column, whereas re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn-oxyhydroxides and enhanced demethylation processes. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of DHg species for the water column. On the contrary, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural “defence” from possible interaction between the metal and the aquatic organisms.  相似文献   

20.
The main objectives of this study were to (a) study the interaction between N and P cycles in mining-affected aquatic systems and (b) to quantify release rates of sedimentary soluble reactive phosphorus (SRP) that may be related to this interaction. Sediment cores and water from Lake Bruträsket (Boliden, northern Sweden) were collected and a time series of water sampling and flow measurements was conducted in the Brubäcken stream connected to the lake. Factors affecting SRP release were studied in a sediment incubation experiment and water column experiments. Field and laboratory measurements indicated that pH and dissolved oxygen are two important factors for SRP release. At the end of the low-oxygen incubation, an SRP concentration of 56 μg?L?1 resulted in a sedimentary flux of 1.1 mg SRP?m?2?day?1. This is ~10 times higher than the flux of 0.12 mg SRP?m?2?day?1 obtained from depth integration of vertical SRP profiles measured in the lake, and ~100 times higher than the external flux of 0.014 mg SRP?m?2?d?1 into the lake (based on catchment area). Field measurements indicated that oxidation of organic matter and mining-related chemicals (ammonium and thiosulphates) may result in increased internal SRP flux from the sediment. Increased P loading in the lake as a result of low-oxygen conditions could change water column total nitrogen/total phosphorus ratios from 27 to 17, consequently changing the lake from being P-limited to be co-limited by N and P. The obtained findings point to possible interaction between the cycles of nitrogen (oxygen consumption) and P (flux from sediment) that may be important for nutrient regulation in mine water recipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号