首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mapping Human Dimensions of Climate Change Research in the Canadian Arctic   总被引:2,自引:0,他引:2  
This study maps current understanding and research trends on the human dimensions of climate change (HDCC) in the eastern and central Canadian Arctic. Developing a systematic literature review methodology, 117 peer reviewed articles are identified and examined using quantitative and qualitative methods. The research highlights the rapid expansion of HDCC studies over the last decade. Early scholarship was dominated by work documenting Inuit observations of climate change, with research employing vulnerability concepts and terminology now common. Adaptation studies which seek to identify and evaluate opportunities to reduce vulnerability to climate change and take advantage of new opportunities remain in their infancy. Over the last 5 years there has been an increase social science-led research, with many studies employing key principles of community-based research. We currently have baseline understanding of climate change impacts, adaptation, and vulnerability in the region, but key gaps are evident. Future research needs to target significant geographic disparities in understanding, consider risks and opportunities posed by climate change outside of the subsistence hunting sector, complement case study research with regional analyses, and focus on identifying and characterizing sustainable and feasible adaptation interventions.  相似文献   

3.
We review the available data that can be used to assess the potential impact of climate change on vegetation, and we use central Spitsbergen, Svalbard, as a model location for the High Arctic. We used two sources of information: recent and short-term historical records, which enable assessment on scales of particular plant communities and the landscape over a period of decades, and palynological and macrofossil analyses, which enable assessment on time scales of hundreds and thousands of years and on the spatial scale of the landscape. Both of these substitutes for standardized monitoring revealed stability of vegetation, which is probably attributable to the harsh conditions and the distance of the area from sources of diaspores of potential new incomers. The only evident recent vegetation changes related to climate change are associated with succession after glacial retreats. By establishing a network of permanent plots, researchers will be able to monitor immigration of new species from diversity 'hot spots' and from an abandoned settlement nearby. This will greatly enhance our ability to understand the effects of climate change on vegetation in the High Arctic.  相似文献   

4.
5.
6.
Hoel AH  Olsen E 《Ambio》2012,41(1):85-95
The prospects of rapid climate change and the potential existence of tipping points in marine ecosystems where nonlinear change may result from them being overstepped, raises the question of strategies for coping with ecosystem change. There is broad agreement that the combined forces of climate change, pollution and increasing economic activities necessitates more comprehensive approaches to oceans management, centering on the concept of ecosystem-based oceans management. This article addresses the Norwegian experience in introducing integrated, ecosystem-based oceans management, emphasizing how climate change, seen as a major long-term driver of change in ecosystems, is addressed in management plans. Understanding the direct effects of climate variability and change on ecosystems and indirect effects on human activities is essential for adaptive planning to be useful in the long-term management of the marine environment.  相似文献   

7.
Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth’s climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth’s climate.  相似文献   

8.
A significant share of the world’s undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.  相似文献   

9.
Marine spatial planning is increasingly used to manage the demands on marine areas, both spatially and temporally, where several different users may compete for resources or space, to ensure that development is as sustainable as possible. Diminishing sea-ice coverage in the Arctic will allow for potential increases in economic exploitation, and failure to plan for cross-sectoral management could have negative economic and environmental results. During the ACCESS programme, a marine spatial planning tool was developed for the Arctic, enabling the integrated study of human activities related to hydrocarbon exploitation, shipping and fisheries, and the possible environmental impacts, within the context of the next 30 years of climate change. In addition to areas under national jurisdiction, the Arctic Ocean contains a large area of high seas. Resources and ecosystems extend across political boundaries. We use three examples to highlight the need for transboundary planning and governance to be developed at a regional level.  相似文献   

10.
Changes in global atmospheric chemistry and climate are taking place as a result of observed trends in long-lived species such as CO2, CH4, N2O, and the CFCs. The continuation of these trends is expected to eventually lead to a major atmospheric warming that might profoundly affect the society we live in. Trends in short-lived species such as NOx and SOx are also suspected. These trends are not as well established, because the shorter-lived species vary spatially and temporally. Trends in NOx would be expected to lead to increases in tropospheric ozone that would add to the warming created by the other greenhouse gases. Trends in NOx could also alter tropospheric OH concentrations that could lead to changes in CH4 and some of the CFCs. On the other hand, increases in sulfur emissions may alter cloud optical properties. The changes in cloud optical properties could possibly offset the warming expected from increases in greenhouse gases, depending on the role of natural oceanic sulfur emissions. This paper summarizes recent research in these areas and the interactions of climate and atmospheric chemistry.  相似文献   

11.
A simple low cost contact closure circuit has been developed to control an array of instruments for atmospheric trace species measurements. The modular design allows reconfiguration of existing instrumentation, addition of new instruments and troubleshooting, with minimum interruption to the ongoing measurements.  相似文献   

12.
Assessments of adaptation options generally focus on incremental, homogeneous ecosystem responses to climate even though climate change impacts can be big, fast, and patchy across a region. Regional drought-induced tree die-off in semiarid woodlands highlights how an ecosystem crash fundamentally alters most ecosystem services and poses management challenges. Building on previous research showing how choice of location is linked to adaptive capacity and vulnerability, we developed a framework showing how the options for retaining desired ecosystem services in the face of sudden crashes depend on how portable the service is and whether the stakeholder is flexible with regard to the location where they receive their services. Stakeholders using portable services, or stakeholders who can move to other locations to obtain services, may be more resilient to ecosystem crashes. Our framework suggests that entering into cooperative networks with regionally distributed stakeholders is key to building resilience to big, fast, patchy crashes.  相似文献   

13.
ABSTRACT

The assessment of climate change impacts on agriculture has emerged as a recognizable field of research over the past 15 years or so. In a relatively short period, this area of work has undergone a number of important conceptual and methodological developments. Among many questions that have been debated are the adaptability of agriculture to climate change and the importance of land management adjustments in reducing the adverse effects of climate change. In turn, this latter focus has spawned a discussion regarding the nature of adaptation and the ability of agriculture to respond to sudden and rapid climatic changes. In this paper we present an overview of this debate.

It is argued that the first generation of climate change impact studies generally ignored the possibility that agriculturalists may adjust their farming practices in order to cope with climate change or to take advantage of new production opportunities. This conceptual oversight has been largely eliminated over the past five years or so. However, questions remain surrounding the likelihood that various adaptive strategies will actually be deployed in particular places. In this paper, we stress the importance of studying adaptation in the context of decision-making at the individual farm level and beyond.  相似文献   

14.
15.
Long term, high level airborne emissions of pollutants from nickel industries on the Kola Peninsula (NW Russia) have resulted in widespread ecosystem injury up to almost complete vegetation eradication within nearest surroundings of the smelters. Although SO2 is the prevailing component of the emissions, it is only part of a much more complex chemical emission spectrum in the region. In addition to acidic gases, industry also emits potentially toxic elements (e.g. metals) which being less volatile than SO2, are deposited within the immediate region in significant concentrations. Additionally, it appears that sources of base cations (co-emission by smelters, sea aerosols, other industries) are adequate to prevent environmental acidification on the regional scale. Acidification of soils and waters appeared only as single cases in the immediate vicinity of the smelters and is not believed to be a major mechanism of environmental deterioration. Proposed critical concentrations (5 microg/m(3)) of SO2 for the northern ecosystems are exceeded over a large area and direct exposure to SO2 is believed to be the possible mechanism of vegetation damage.  相似文献   

16.
17.
Jones CG  Wyser K  Ullerstig A  Willén U 《Ambio》2004,33(4-5):211-220
The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.  相似文献   

18.
Climate change incurs costs, but government adaptation budgets are limited. Beyond a certain point, individuals must bear the costs or adapt to new circumstances, creating political-economic tipping points that we explore in three examples. First, many Alaska Native villages are threatened by erosion, but relocation is expensive. To date, critically threatened villages have not yet been relocated, suggesting that we may already have reached a political-economic tipping point. Second, forest fires shape landscape and ecological characteristics in interior Alaska. Climate-driven changes in fire regime require increased fire-fighting resources to maintain current patterns of vegetation and land use, but these resources appear to be less and less available, indicating an approaching tipping point. Third, rapid sea level rise, for example from accelerated melting of the Greenland ice sheet, will create a choice between protection and abandonment for coastal regions throughout the world, a potential global tipping point comparable to those now faced by Arctic communities. The examples illustrate the basic idea that if costs of response increase more quickly than available resources, then society has fewer and fewer options as time passes.  相似文献   

19.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   

20.
Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range of the insects. Insects that harass reindeer in the summer are also likely to become more widespread, abundant and active during warmer summers while refuges for reindeer/caribou on glaciers and late snow patches will probably disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号