首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to study the correlation between ground-based measured aerosol optical depth (AOD) and TOMS Aerosol Index. For this reason, two AOD data-sets have been analysed. The first set of measurements has been obtained in a desert plateau in Namibia during July 1998, while the second one has been collected in Tito Scalo (Italy), a very small industrial zone surrounded by a large rural area, in June–July 2000. The AOD has been computed in the spectral range 400–870 nm with a resolution of 3 nm by measuring the direct solar irradiance. The used spectroradiometer is an Optical Spectrum Analyser, equipped with a continuously rotating diffraction grating. Successively, a correlation between the Earth Probe TOMS Aerosol Index, whose definition uses backscattered radiances at 331 and 360 nm, and the AOD in the visible range was searched for. A satisfying correlation was found, whose Pearson correlation coefficient R2 values range from 0.64 to 0.91.  相似文献   

2.
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68–1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34–0.5 μm) compared to that (0.28–0.37) at long-wavelength (LW) channels (0.87–1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68–0.82 and 1.14–1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23–3 μm) which was 60–70 % of aerosol 10- μm (size 0.23–10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.  相似文献   

3.
Aerosols reduce the surface reaching solar flux by scattering the incoming solar radiation out to space. Various model studies on climate change suggest that surface cooling induced by aerosol scattering is the largest source of uncertainty in predicting the future climate. In the present study measurements of aerosol optical depth (AOD) and its direct radiative forcing efficiency has been presented over a typical tropical urban environment namely Hyderabad during December, 2003. Measurements of AOD have been carried out using MICROTOPS-II sunphotometer, black carbon aerosol mass concentration using Aethalometer, total aerosol mass concentration using channel Quartz Crystal Microbalance (QCM) Impactor Particle analyser and direct normal solar irradiance using Multifilter Rotating Shadow Band Radiometer (MFRSR). Diurnal variation of AOD showed high values during afternoon hours. The fraction of BC estimated to be approximately 9% in the total aerosol mass concentration over the study area. Results of the study suggest -62.5 Wm(-2) reduction in the ground reaching shortwave flux for every 0.1 increase in aerosol optical depth. The results have been discussed in the paper.  相似文献   

4.
Abstract

Aerosol optical depth (AOD) acquired from satellite measurements demonstrates good correlation with particulate matter with diameters less than 2.5 µm (PM2.5) in some regions of the United States and has been used for monitoring and nowcasting air quality over the United States. This work investigates the relation between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and PM2.5 over the 10 U.S. Environmental Protection Agency (EPA)-defined geographic regions in the United States on the basis of a 2-yr (2005–2006) match-up dataset of MODIS AOD and hourly PM2.5 measurements. The AOD retrievals demonstrate a geographical and seasonal variation in their relation with PM2.5. Good correlations are mostly observed over the eastern United States in summer and fall. The southeastern United States has the highest correlation coefficients at more than 0.6. The southwestern United States has the lowest correlation coefficient of approximately 0.2. The seasonal regression relations derived for each region are used to estimate the PM2.5 from AOD retrievals, and it is shown that the estimation using this method is more accurate than that using a fixed ratio between PM2.5 and AOD. Two versions of AOD from Terra (v4.0.1 and v5.2.6) are also compared in terms of the inversion methods and screening algorithms. The v5.2.6 AOD retrievals demonstrate better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in the cloud-screening algorithm.  相似文献   

5.
The special and temporal characteristics of aerosol optical depth (AOD) and Angstrom wavelength exponent (Alpha) and their relationship with aerosol chemical compositions were analyzed by using the data of CE318 sun-photometer and aerosol sampling instruments at Lin'an, Shangdianzi and Longfengshan regional atmospheric background stations. Having the highest AOD among the three stations, Lin'an shows two peaks in a year. The AOD at Shangdianzi station shows a single annual peak with an obvious seasonal variation. The AOD at Longfengshan station has obvious seasonal variation which peaks in spring. The Alpha analysis suggests that the aerosol sizes in Lin'an, Longfengshan and Shangdianzi change from fine to coarse categories. The relationship between the aerosol optical depths of the Lin'an and Longfengshan stations and their chemical compositions is not significant, which suggests that there is not a simple linear relationship between column aerosol optical depth and the near surface chemical compositions of atmospheric aerosols. The aerosol optical depth may be affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere.  相似文献   

6.
Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2–0.3 mg m−3) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4–0.45 mg m−3) will need to be decreased to ~0.2 mg m−3 for sustaining coral reef communities.  相似文献   

7.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

8.
The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from −12 to −8 W m−2 was mainly distributed over the Sichuan Basin and the eastern China’s coastal regions in the all-sky case at TOA, and the forcing effect ranging from −8 to −4 W m−2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan  相似文献   

9.
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation between these measures, especially in the US east, and encouraged the use of satellite data for spatially interpolating between ground sensors. This work shows that cases of weak correlation can be better understood with knowledge of whether the aerosol is confined to the surface planetary boundary layer (PBL) or aloft. Lidar apportionment of the fraction of aerosol optical depth that is within the PBL can be scaled to give better agreement with surface PM2.5 than does the total column amount. The study has shown that lidar combined with surface and remotely sensed data might be strategically used to improve our understanding of long-range or regionally transported pollutants in multiple dimensions.  相似文献   

10.
Poor air quality episodes occur often in metropolitan Atlanta, GA. The primary focus of this research is to assess the capability of satellites as a tool in characterizing air quality in Atlanta. Results indicate that intracity PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) concentrations show similar patterns as other U.S. urban areas, with the highest concentrations occurring within the city. PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) have higher values in the summer than spring, yet MODIS AOD doubles in the summer unlike PM2.5. Most (80%) of the Ozone Monitoring Instrument aerosol index (AI) is below 0.5 with little differences between spring and summer. Using this value as a constraint of the carbonaceous aerosol signal in the urban area, aerosol transport events such as wildfire smoke associated with higher positive AI values can be identified. The results indicate that MODIS AOD is well correlated with PM2.5 on a yearly and seasonal basis with correlation coefficients as high as 0.8 for Terra and 0.7 for Aqua. A possible alternative view of the PM2.5 and AOD relationship is seen through the use of AOD thresholds. These probabilistic thresholds provide a means to describe the air quality index (AQI) through the use of multiyear AOD records for a specific area. The National Ambient Air Quality Standards (NAAQS) are used to classify the AOD into different AQI codes and probabilistically determine thresholds of AOD that represent most of a specific AQI category. For example, 80% of cases of moderate AQI days have AOD values between 0.5 and 0.6. The development of AOD thresholds provides a useful tool for evaluating air quality from the use of satellites in regions where there are sparse ground-based measurements of PM2.5.  相似文献   

11.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

12.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

13.
We develop a method that uses both the total column aerosol optical depth (AOD) and the fractional AOD values for different aerosol types, derived from Multiangle Imaging SpectroRadiometer (MISR) aerosol data, to estimate ground-level concentrations of fine particulate matter (PM2.5) mass and its major constituents in eastern and western United States. Compared with previous research on linking column AOD with ground-level PM2.5, this method treats various MISR aerosol components as individual predictor variables. Therefore, the contributions of different particle types to PM2.5 concentrations can be estimated. When AOD is greater than 0.15, MISR is able to distinguish dust from non-dust particles with an uncertainty level of approximately 4%, and light-absorbing from non-light-absorbing particles with an uncertainty level of approximately 20%. Further analysis shows that MISR Version 17 aerosol microphysical properties have good sensitivity and internal consistency among different mixture classes. The retrieval uncertainty of individual fractional AODs ranges between 5 and 11% in the eastern United States, and between 11 and 31% in the west for non-dust aerosol components. These results provide confidence that the fractional AOD models with their inherent flexibility can make more accurate predictions of the concentrations of PM2.5 and its constituents.  相似文献   

14.
Using one year of Aerosol Optical Depth (AOD) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite and particular matter (PM) contents measured at eleven sites located mostly in the eastern China in 2007, the relationship between columnar AOD and hourly and daily average (DA) PM were established. The peak AOD observed from MODIS was generally consistent with the surface PM measurements in eastern China, where Zhengzhou had the maximum annual mean PM10 of 182.1 μg m?3, while Longfengshan had the minimum annual mean of 38.1 μg m?3. Ground level observations indicated that PM concentration varies widely across different regions, which was mainly due to the difference in weather conditions and anthropogenic emissions. The coarse particles accounted for the main air pollution in Zhengzhou and Benxi whiles the fine particles, however, were the main constituents in other sites. Results showed that MODIS AOD (averaged over the box of 5 × 5 and 3 × 3 pixels) had a better positive correlation with the coincident hourly average (HA) PM concentration than with DA due to diurnal variation in PM mass measurements. After correcting AOD for relative humidity (RH), the correlation did not improve significantly, suggesting that the RH was not the main factor affecting the correlation of PM with AOD. The statistical regression analysis between MODIS AOD and PM mass suggested that the satellite-derived AOD is a useful tool for mapping PM distribution over large spatial domains.  相似文献   

15.
Aerosol optical depth (AOD), an indirect estimate of particulate matter using satellite observations, has shown great promise in improving estimates of PM2.5 (particulate matter with aerodynamic diameter less than or equal to 2.5 μm) surface. Currently, few studies have been conducted to explore the optimal way to apply AOD data to improve the model accuracy of PM2.5 in a real-time air quality system. We believe that two major aspects may be worthy of consideration in that area: 1) an approach that integrates satellite measurements with ground measurements in the estimates of pollutants and 2) identification of an optimal temporal scale to calculate the correlation of AOD and ground measurements. This paper is focused on the second aspect, identifying the optimal temporal scale to correlate AOD with PM2.5. Five following different temporal scales were chosen to evaluate their impact on the model performance: 1) within the last 3 days, 2) within the last 10 days, 3) within the last 30 days, 4) within the last 90 days, and 5) the time period with the highest correlation in a year. The model performance is evaluated for its accuracy, bias, and errors based on the following selected statistics: the Mean Bias, the Normalized Mean Bias, the Root Mean Square Error, Normalized Mean Error, and the Index of Agreement. This research shows that the model with the temporal scale: within the last 30 days, displays the best model performance in a southern multi-state area centered in Mississippi using 2004 and 2005 data sets.  相似文献   

16.
With the development of satellite experiments supplementary and validating ground-based measurements are gaining growing importance for the inference and evaluation of radiation-related aerosol parameters. Both kinds of measurements have been conducted and interpreted mainly under globally or locally restricted aspects for a limited time period only. Results are presented from four rural regions (coastal zone, lowlands, highlands, high mountain); they are column-related aerosol parameters, deduced from monitoring programs of spectral aerosol optical depth (AOD) as well as almucantar sky irradiance measurements. After 13 years of continuous measurements of trends and variations in aerosol optical depths, these results are based on 5 years of data collection (1994–1998). There are significant differences among the parameters of the four regions when related to the inversion method of the AOD spectra. A clear interdependence was found between all column-related parameters and the real part of the refractive index, which in turn depends on the chosen retrieval method. The differences among the four regions are characterized mainly by their different altitudes, with relative humidity being responsible for their internal variation. An increase in the relative humidity from 35 to 55–60% influences the most interesting parameters such as refractive index (real part), hemispheric backscattered fraction b, and direct radiative forcing ΔF as follows: The real part of the refractive index decreases from 1.6±0.05 to 1.42±0.04, b decreases by 8–10%, and, due to the increase in AOD, ΔF increases by about 20% in the spectral region 0.4–1.0 μm. The quantities of the parameters depend on the retrieval methods too.  相似文献   

17.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   

18.
Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment’s impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.  相似文献   

19.
20.
Indo-Gangetic (IG) alluvial plains, one of the largest river basins in the world, suffers from the long range transport of mineral dust from the western arid and desert regions of Africa, Arabia and Rajasthan during the summer (pre-monsoon season, April–June). These dust storms influence the aerosol optical depth (AOD) across the IG plains. The Kanpur AERONET (Aerosol Robotic Network) station and Moderate Resolution Imaging Spectro-radiometer (MODIS) data show pronounced effect on the aerosol optical properties and aerosol size distribution during major dust storm events over the IG plains that have significant effect on the aerosol radiative forcing (ARF). The multi-band AOD, from AERONET and MODIS, show contrasting changes in wavelength dependency over dust affected regions. A time collocated (±30 min) validation of AERONET AOD with MODIS Terra (level 2 swath product) over Kanpur, at a common wavelength of 550 nm for the period 2001–2005 show moderate correlation (R2∼0.6) during the summer season. The average surface forcing is found to change by −23 W m−2 during dust events and the top of the atmosphere (TOA) forcing change by −11 W m−2 as compared to the non-dusty clear-sky days. A strong correlation is found between AOD at 500 nm and the ARF. At surface, the correlation coefficient between AOD and ARF is found to be high (R2=0.925) and is found to be moderate (R2=0.628) at the TOA. The slope of the regression line gives the aerosol forcing efficiency at 500 nm of about −46±2.6 W m−2 and −17±2.5 W m−2 at the surface and the TOA, respectively. The ARF is found to increase with the advance of the dry season in conjunction with the gradual rise in AOD (at 500 nm) from April (0.4–0.5) to June (0.6–0.7) over the IG plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号