首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A badge-type personal sampler was developed for measuring personal exposure to nitrogen dioxide (NO2). An absorbent sheet containing triethanolamine (TEA) solution absorbed NO2 which diffused through five layers of hydrophobic fiber filter. Wind effects on absorption rate were suppressed by these filter layers. NO2 was measured by the sampler with a sensitivity of 124.8 μg h/m3 (66 ppb h) and an accuracy of within ± 20%. It could be used for measuring personal exposure to NO2 without interfering with the wearer's daily activities. Nitric oxide (NO) could be measured after a small modification to the sampler provided oxidation ability to the layers of diffusion filter. Three layers of hydrophobic fiber filter were replaced by 12 layers of glass fiber filter containing chromium trioxide solution. NO was oxidized to NO2 in the oxidation layers and absorbed by the absorbent sheet together with the coexisting NO2. Sensitivity and accuracy of the sampler for NO were nearly equal to that for NO2.  相似文献   

2.
A photochemical air quality simulation model was applied to an area covering a large portion of The Netherlands and nearby source areas in Belgium and Germany. Simulations of an O3 episode typical of those that occur during summer months yielded good agreement between predicted and observed O3 levels. The level of performance for NO2 and NO was somewhat less than that for O3. The model was used to study the influence of mobile and stationary sources within the region, as well as the inflow of pollutants from outside the region on predicted O3, NO2, and NO levels within the modeling region. Pollutants transported into the region appear to have a significant influence on O3 levels. The influence of stationary source emissions on O3 and NO2 levels is greater than that of mobile source emissions. The model has been a valuable tool in evaluating the possible influence of different source categories and control regulations on pollutant concentration levels.  相似文献   

3.
The purpose of this study is to evaluate the effect of reductions of reactive organic gases (ROG) and NOx emissions on short-term O3 and NO2 concentrations and annual average NO2 concentrations in the California South Coast Air Basin. Short-term air quality predictions were obtained by applying the Systems Applications Airshed Model to summer O3 and autumn NO2 episodes. Effects of emission controls on annual NO2 concentrations were estimated using CDM and a new parcel tracking model NOXTRAK. Results for the summer O3 episode indicate that ROG emission reduction in an effective means for reducing peak O3 concentrations. NOx emission reduction imposed in addition to ROG emission reductions are counterproductive in reducing peak O3 concentrations. The modeling results also suggest that attainment of the 1-h federal O3 standard requires ROG emission reductions on the order of 80% from 1987 levels. Results for the autumn NO2 episode indicate that NOx emission reductions approximating those recommended in a proposed Air Quality Management Plan (about 22%) will result in only small (about 5%) reductions in the peak NO2 concentrations. ROG emission reduction may be more effective than NOx emission reduction in reducing the peak NO2 concentration. For the episode studied, a reduction of 36% in ROG emissions is estimated to result in a reduction in peak NO2 concentrations commensurate with that required to attain the 1-h state NO2 standard. Model calculations also indicate that the federal NO2 standard may not be meet by 1987 at one or two stations, but may blosely approached.  相似文献   

4.
Determinants of outdoor, indoor and personal concentrations of nitrogen dioxide (NO2) were assessed in a subset of pregnant women of the Spanish INMA (Environment and Childhood) Study. Home indoor and outdoor NO2 concentrations were measured during 48 h with passive samplers for 50 and 58 women from the INMA cohorts of Valencia and Sabadell, respectively. Women from Sabadell also carried personal NO2 samplers during the same period. Data on time–activity patterns, socio-economic characteristics, and environmental exposures were obtained through questionnaires. Multiple linear regression models were developed to predict NO2 levels.In Valencia, median outdoor NO2 levels (42 µg/m3) were higher than median indoor levels (36 µg/m3). In Sabadell, personal NO2 showed the highest median levels (40 µg/m3), followed by indoor (32 µg/m3) and outdoor (29 µg/m3) levels. Personal exposure to NO2 correlated best with the indoor NO2 levels. Temporal and traffic-related variables were significant predictors for outdoor NO2 levels. Thirty-two percent of the indoor NO2 variability in the two cohorts was explained by outdoor NO2 levels and the use of the gas appliances. The model for personal exposure accounted for 59% of the variance in NO2 levels in Sabadell with four predictor variables (outdoor and indoor NO2 levels, time spent in outdoor environments and time exposed to a gas cooker). No significant association was found between personal or indoor NO2 levels and exposure to environmental tobacco smoke (ETS) at home.Personal NO2 levels were found to be strongly influenced by indoor NO2 concentrations. The study supports the use of time–activity patterns along with indoor measurements to predict personal exposure to traffic-related air pollution.  相似文献   

5.
A chronic exposure study was initiated to determine the effects of diesel exhaust on the health of experimental animals. For this purpose, test atmospheres of clean air (control) or freshly diluted diesel exhaust at concentrations of 250, 750, and 1500 μg/m3 were supplied to four 12.6 m3 inhalation chambers which housed rats and guinea pigs. Diesel aerosol size and concentration, as well as chamber temperature and relative humidity, were continually monitored and controlled to maintain the exposure dose levels and an environment of 22±2°C and 50%±20% relative humidity. The concentrations of CO and NOx were found to be 5.8±1.0 mg/m3 and 7.9±1.0 mg/m3 above ambient in the chamber containing 1500 μg/m3 of particulate. Animals were supplied from the chambers, on a random basis, for both intramural and extramural studies throughout the exposure period. The experiment ran uninterrupted for over twelve months with mean diesel particle mass concentrations within 2% of the target values.  相似文献   

6.
Tropical soils are important sources and sinks of atmospheric methane (CH4) and major sources of oxides of nitrogen gases, nitrous oxide (NM2O) and NOx (NO+NO2). These gases are present in the atmosphere in trace amounts and are important to atmospheric chemistry and earth's radiative balance. Although nitric oxide (NO) does not directly contribute to the greenhouse effect by absorbing infrared radiation, it contributes to climate forcing through its role in photochemistry of hydroxyl radicals and ozone (O3) and plays a key role in air quality issues. Agricultural soils are a primary source of anthropogenic trace gas emissions, and the tropics and subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. The soil microbial processes responsible for the production and consumption of CH4 and production of N-oxides are the same in all parts of the globe, regardless of climate. Because of the ubiquitous nature of the basic enzymatic processes in the soil, the biological processes responsible for the production of NO, N2O and CH4, nitrification/denitrification and methanogenesis/methanotropy are discussed in general terms. Soil water content and nutrient availability are key controls for production, consumption and emission of these gases. Intensive studies of CH4 exchange in rice production systems made during the past decade reveal new insight. At the same time, there have been relatively few measurements of CH4, N2O or NOx fluxes in upland tropical crop production systems. There are even fewer studies in which simultaneous measurements of these gases are reported. Such measurements are necessary for determining total greenhouse gas emission budgets. While intensive agricultural systems are important global sources of N2O and CH4 recent studies are revealing that the impact of tropical land use change on trace gas emissions is not as great as first reports suggested. It is becoming apparent that although conversion of forests to grazing lands initially induces higher N-oxide emissions than observed from the primary forest, within a few years emissions of NO and N2O generally fall below those from the primary forest. On the other hand, CH4 oxidation is typically greatly reduced and grazing lands may even become net sources in situations where soil compaction from cattle traffic limits gas diffusion. Establishment of tree-based systems following slash-and-burn agriculture enhances N2O and NO emissions during and immediately following burning. These emissions soon decline to rates similar to those observed in secondary forest while CH4 consumption rates are slightly reduced. Conversion to intensive cropping systems, on the other hand, results in significant increases in N2O emissions, a loss of the CH4 sink, and a substantial increase in the global warming potential compared to the forest and tree-based systems. The increasing intensification of crop production in the tropics, in which N fertilization must increase for many crops to sustain production, will most certainly increase N-oxide emissions. The increase, however, may be on the same order as that expected in temperate crop production, thus smaller than some have predicted. In addition, increased attention to management of fertilizer and water may reduce trace gas emissions and simultaneously increase fertilizer use efficiency.  相似文献   

7.
The indoor and outdoor air quality of two staff quarters of Hong Kong Polytechnic University at Tsim Sha Tsui East (TSTE) and Shatin (ST) were investigated. The air sampling was carried out in winter for about two months starting from January to February of 1996. Fifteen flats from each staff quarter were randomly selected for indoor/outdoor air pollutant measurements. The pollutants measured were NOx, NO, NO2, SO2, CO, and O3. The variations of pollutant concentrations between indoor and outdoor air were investigated on weekday mornings, weekday evenings, weekend mornings, and weekend evenings. All indoor/outdoor pollutant concentrations measured did not exceed the ASHRAE/NAAQS standard. The carbon monoxide concentrations indoors were systemically higher than those outdoors at the TSTE and the ST quarters, both on weekdays and Sunday, which indicates there are CO sources indoors. Except for CO, the indoor levels of other pollutants (NOx, NO, NO2, SO2, and O3) are lower than those outdoors. There was a significant correlation (P < 0.05) between indoor and outdoor concentrations for SO2 and O3 at both the TSTE and the ST quarters. Except for O3, the mean concentrations of all the pollutants in the TSTE quarters, both indoor and outdoor, were higher than that of the ST quarters in all sampling periods. All indoor and outdoor O3 levels were lower at the TSTE quarters than those at the ST quarters. The O3 ratios of TSTE/ST were 0.72 outdoor and 0.79 indoor. This can be explained by the NO titration reaction through NO conversion to NO2.  相似文献   

8.
Human exposure to ambient ozone (O3) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source–receptor relationships between nitrogen oxides (NOx) emissions and population exposure to ambient O3 in 48 states over the continental United States. By removing NOx emissions from each state one at a time, we calculate the change in O3 exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source–receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NOx emissions from upwind states contribute more to O3 exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O3 exposures in 90% of U.S. states. A state's NOx emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O3 exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O3 exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NOx is equal. In this study, the average O3 exposures caused by one ton of NOx emissions ranges from ? 2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NOx emissions varies considerably over space.  相似文献   

9.
This paper describes results of a study that examined NO and NO2 formation on range-top burners and in diffusion flames. These flames were characterized by composition and temperature profiles. Range-top burner flames and pilot flames displayed qualitatively similar behavior with respect to the kinds of flame regions in which relatively high NO2/NO ratios were identified. These regions of high NO2/NO ratios were consistently either regions of low oxygen concentration or flame surfaces subjected to thermal quenching. A limited series of experiments with modified burners indicated that reduced emissions from both the RTB and pilot flames could be achieved by (1) improved primary aeration, using 50% or greater primary air, and (2) using flame geometries designed to minimize flame surface, e.g., flat-flame burners or other designs having effectively fewer distinct ports. Both NO and NO2 are readily produced in diffusion and partially premixed Bunsen-type flames, mainly in the vicinity of the hot visible zone. High NO2/NO ratios are associated with the cooler regions of the flame, as, for example, at the base of the flame in the highly diluted downstream region and in the fuel-rich regions of the flames. A simplified reaction mechanism based on CN and NH radicals being oxidized to NO followed by NO + HO2 → NO2 + OH appears to explain the high NO2/NO ratios observed. A practical implication of the study is that a burner designed with improved aeration and mixing minimization of flame surface should emit less NO2.  相似文献   

10.
BackgroundElevated temperature and air pollution have been associated with increased mortality. Exposure to heat and air pollution, as well as the density of vulnerable groups varies within cities. The objective was to investigate the extent of neighbourhood differences in mortality risk due to heat and air pollution in a city with a temperate maritime climate.MethodsA case-crossover design was used to study associations between heat, air pollution and mortality. Different thermal indicators and air pollutants (PM10, NO2, O3) were reconstructed at high spatial resolution to improve exposure classification. Daily exposures were linked to individual mortality cases over a 15 year period.ResultsSignificant interaction between maximum air temperature (Tamax) and PM10 was observed. During “summer smog” days (Tamax > 25 °C and PM10 > 50 μg/m3), the mortality risk at lag 2 was 7% higher compared to the reference (Tamax 15 °C and PM10 15 μg/m3). Persons above age 85 living alone were at highest risk.ConclusionWe found significant synergistic effects of high temperatures and air pollution on mortality. Single living elderly were the most vulnerable group. Due to spatial differences in temperature and air pollution, mortality risks varied substantially between neighbourhoods, with a difference up to 7%.  相似文献   

11.
Two kerosene-fired space heaters, one white-flame convective and one blue-flame radiant, were operated in the master bedroom and living room of an unoccupied house (elevation: 1800 m) under several simulated use conditions. Tests were conducted in the master bedroom with the bedroom door and bedroom window open and closed. The heaters were operated until an 8 °C temperature rise was achieved in the room. Increases in bedroom concentrations of CO, CO2, NO, NO2, and O2 are reported. The increases in CO2 levels ranged from 2440 to 5440 mL/m3 (ppm) while the increases in NO2 levels ranged from 0.12 to 0.60 mL/m3 (ppm). The NO2 emission rate from the convective heater was reduced at the high altitude location as compared with previous emission rate measurements conducted near sea level with the same heater. In addition, inter-room pollutant transport rates are reported for bedroom tests conducted with the window closed. While inter-room pollutant transport rates were less than 10 m3 with the bedroom door closed (opening area less than 100 cm2), they ranged from 16 m3/h to 53 m3/h with the bedroom door open 2.5 cm (opening = 520 cm2), and ranged from 190 to 3400 m3/h with the door fully open (opening area = 15,000 cm2). Continuous emission rate data are reported for tests conducted with the heater in the living room.  相似文献   

12.
High natural radiation areas in the coastal and peninsular India were studied for airborne thorium and resultant population exposure due to inhalation. Four locations covering three states viz., Ayiramthengu and Neendakara in Kerala, Kudiraimozhi in Tamil Nadu and Bhimilipatnam in Andhra Pradesh were investigated. External gamma radiation fields 1 m above the monazite ore bodies ranged from 200 to 3000 nGy h-1. Soil samples showed 232Th specific activity varying from 0·1 to 1·5 Bq g-1 with surface alpha activity in the range of 1·0–12·5 Bq cm-2. Suspended particulates in the samples ranged from 60–140 μg m-3 with 232Th showing a wider variation of <0·03–0·3 mBq m-3. There was poor correlation between suspended particulates and long-lived alpha airborne activity . The resuspension factors for 232Th were in the range of 1·5×10-8–7·9×10-7 cm-1. Higher resuspension was correlated with dry sand dunes. The upper limits for Committed Effective Dose (CED) due to inhalation of airborne 232Th at the respective high natural radiation areas were estimated to range from 50±30 to 300±130 μSv (5–30 mrem) per year per adult member of public assuming an activity median aerodynamic diameter of 1 μm for the airborne particulates.  相似文献   

13.
The amount of NO2 and NO produced by the machine smoking of cigarettes was determined for 15 commercial Canadian brands. Average yield of NO was 1.44 μmoles or about 13% of the average reported for American cigarettes. Levels of NO2 were less than 12% of NO and were probably due to the oxidation of NO. In order to assess the contribution of tobacco smoke to levels of NO in ambient air, 5 brands of cigarettes were smoked in 27 cubic meter controlled environment room. Ventilation conditions were either 2.5 or 5.0 air changes per hour (ACH) and each experiment was replicated 3 times for a total of 30 experiments. Ventilation rates of 0.3 and 1.5 ACH were also selected in a second series of experiments in which only one brand of cigarette was smoked. Least squares estimates for the effective ventilation rates were obtained in the usual manner after linearizing the decay portion of the NO time curve. In each of the experiments, the regression explained at least 95% of the variation in the levels of NO with time. Loss of NO due to factors other than ventilation appeared to be constant within experimental error and averaged 2.22 ACH. Equilibrium values for NO were grossly underestimated when results from currently accepted proecedures for smoke analysis were used in modeling the growth and decay of NO. Goodness-of-fit was improved when equilibrium values were estimated based on observed levels in ambient air. This approach may be more suitable for evaluating the potential contribution of cigarette smoke to levels of indoor air pollutants.  相似文献   

14.
A complete assessment of the health effects of diesel emissions must take into account the possible chemical transformations (and associated biological impacts) of particulate organic matter (POM) due to reactions with the many gaseous copollutants which have now been unambiguously demonstrated to be present in atmospheres burdened by photochemical air pollution. These copollutants include the “trace” species, nitric (HNO3) and nitrous (HONO) acids, the nitrate radical (NO3), formaldehyde (H2CO) and formic acid (HCOOH), as well as the criteria pollutants, ozone (O3) and nitrogen dioxide (NO2). Techniques for establishing the atmospheric concentrations of the trace pollutants (and their spatial and temporal variations) are briefly described, and we present results of investigations into the reactions of polycyclic aromatic hydrocarbons (PAH) coated on filters and exposed to ambient concentrations of O3 and NO2. Environmental health implications of these results are discussed and include the potential for sampling “artifacts” and their possible effects on the correlation (or lack thereof) between ambient PAH levels and urban lung cancer rates, as well as the problems associated with understanding the appropriate POM “dose” to be employed in animal testing and assessments of impacts on human health.  相似文献   

15.
In this study, solid-gas partitioning coefficients of PAHs on fly ash in stack gas from a municipal incinerator were determined according to elution analysis with gas-solid chromatography. The fly ash from the electrostatic precipitator was sieved and packed into a 1/4 inch (6.3 mm) pyrex column. Elution analysis with gas-solid chromatography was conducted for three PAHs, Napthalene, Anthracene, and Pyrene. The temperature for elution analysis was in the range of 100°C to 300°C. Vg, specific retention volume obtained from elution analysis, and S, specific surface area of fly ash measured by a surface area measurement instrument, were used to estimate the solid-gas partitioning coefficient, KR. In addition, the relationships between KR and temperature and KR and PAH concentrations were investigated.  相似文献   

16.
The chemical characteristics of precipitation were analyzed based on the chemical composition of principal ionic within acid rain(from February 2007 to January 2008)of Liaozhong Meteorological Station located in Malong Village in Liaozhong County of Northeast China,meteorological conditions on the corresponding period ground,and variation of several air pollutants concentration.The results indicated that:(1)The precipitation average pH value of all samples was4.76;the frequency of acid rain during the observation period was 70.7%;the frequency was 82.8%in summer and autumn.(2)In the chemical composition of precipitation,the primary anions were SO42-and NO3-;the primary cations were NH4+and Ca2+.(3)All concentration of anions was higher in summer and winter,but relatively low in spring and autumn.This showed that the relationship between regional rainfall acidification and pollution was not significant.(4)Rainwater acidity and nearly floor gaseous pollution concentration were different from each other,and pH and NOx,CO,NO2 and O3concentrations showed significant negative correlation,but was not obvious with SO2 concentration.However,the pH and alkaline pollutants,such as particulate,was positively correlative.  相似文献   

17.
Variation of bilateral leaf structures in Middle Ural cenopopulations of the weeping birch (Betula pendula Roth.) growing in gradients of industrial pollution was studied to test the efficiency of a new method of population and individual phenogenetic monitoring allowing an indirect assessment of developmental destabilization by segregating the variance of total asymmetry (TA R 2) into its additive components, the variances of fluctuating asymmetry (FA R 2) and directional asymmetry (DA R 2). The method was tested in the impact zones of two copper-smelting plants in the Middle Urals. The degree of impact was characterized by the index of technogenic pollution (ITP) reflecting the average total contents of 15 water-soluble pollutants in snow samples. The level of asymmetry was estimated from the numbers of denticles with incoming veins (dentovenal elements) on the left and right leaf margins. Spearman’s coefficient of rank correlation between the group values of variance in fluctuating asymmetry (FA R 2) and corresponding ITP values reached r S = 0.914 (p < 0.001), providing evidence that the method is highly appropriate for ecological indication of the phenogenetic response of trees to environmental pollution.  相似文献   

18.
IntroductionEnvironmental exposures have been linked to length of gestation but the question as to during which weeks of gestation pregnancies are most susceptible still remains little explored.We estimated the effect of maximum apparent temperature and air pollution levels on risk of birth by week of gestation.MethodsWe analyzed two cohorts of singleton live births in Rome (2001–2010) and Barcelona (2007–2012). Maximum apparent temperature (MAT), PM10, O3 and NO2 were analyzed in the warm period (1st April–31st October).Gestational week-specific hazard ratios of giving birth associated to a 1-unit increase in exposure were estimated fitting Cox regression models adjusted for seasonality, and demographic and clinical characteristics of the mother.ResultsWe observed 78,633 births (5.5% preterm) in Rome and 27,255 (4.5% preterm) in Barcelona. The highest hazard ratios for 1 °C increase in MAT were in the 22nd–26th weeks of gestation, 1.071, (95% CI 1.052–1.091) in Rome and 1.071 (95% CI 1.036–1.106) in Barcelona, and decreased to 1.032 (95% CI 1.026–1.038) and 1.033 (95% CI 1.020–1.045) at the 36th week of gestation, respectively. Similar associations and trends were observed for PM10 and NO2 after adjusting for MAT. O3 showed similar trends but weaker associations.ConclusionsWe found, consistently in Rome and Barcelona, an increased risk of delivery for a unit increase in MAT, PM10, NO2 and O3, especially in the second half of the second trimester, thus effectively increasing the risk of preterm and particularly early preterm birth. Results may help to increase awareness of these risks among public-health regulators and clinicians, leading to better preventive strategies.  相似文献   

19.
Data on indoor/outdoor pollutant and tracer concentrations were collected during different periods in 1981 at a residence in Newton, MA. Special studies within the kitchen were conducted to determine the vertical and horizontal variability of pollutant and tracer gas concentrations. A reactive chemistry model incorporating simplified NOx chemistry was developed to simulate pollutant concentrations indoors. Multicompartmental mathematical modeling tools were also developed and tested to estimate efficiently the effective, emission, ventilation, and removal rates, as well as the intercompartmental pollutant exchange coefficients. Model studies utilizing two- and three-compartment systems and tracer measurements proved that the dynamics of pollutant mixing inside a kitchen is not only complex but may be quite important in controlling spatial and temporal variability of reactive species. Further monitoring and modeling studies to investigate the critical aspects of the short-term dynamics of the reactive pollutants inside homes with gas cooking stoves are recommended.  相似文献   

20.
Studies in a number of countries have reported associations between exposure to ambient air pollutants and adverse birth outcomes, including low birth weight, preterm birth (PTB) and, less commonly, small for gestational age (SGA). Despite their growing number, the available studies have significant limitations, e.g., incomplete control of temporal trends in exposure, modest sample sizes, and a lack of information regarding individual risk factors such as smoking. No study has yet examined large numbers of susceptible individuals.We investigated the association between ambient air pollutant concentrations and term SGA and PTB outcomes among 164,905 singleton births in Detroit, Michigan occurring between 1990 and 2001. SO2, CO, NO2, O3 and PM10 exposures were used in single and multiple pollutant logistic regression models to estimate odds ratios (OR) for these outcomes, adjusted for the infant's sex and gestational age, the mother's race, age group, education level, smoking status and prenatal care, birth season, site of residence, and long-term exposure trends.Term SGA was associated with CO levels exceeding 0.75 ppm (OR = 1.14, 95% confidence interval = 1.02–1.27) and NO2 exceeding 6.8 ppb (1.11, 1.03–1.21) exposures in the first month, and with PM10 exceeding 35 μg/m3 (1.22, 1.03–1.46) and O3 (1.11, 1.02–1.20) exposure in the third trimester. PTB was associated with SO2 (1.07, 1.01–1.14) exposure in the last month, and with (hourly) O3 exceeding 92 ppb (1.08, 1.02–1.14) exposure in the first month.Exposure to several air pollutants at modest concentrations was associated with adverse birth outcomes. This study, which included a large Black population, suggests the importance of the early period of pregnancy for associations between term SGA with CO and NO2, and between O3 with PTB; and the late pregnancy period for associations between term SGA and O3 and PM10, and between SO2 with PTB. It also highlights the importance of accounting for individual risk factors such as maternal smoking, maternal race, and long-term trends in air pollutant levels and adverse birth outcomes in evaluating relationships between pollutant exposures and adverse birth outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号