首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This report describes a study to identify reference lakes in two lake classifications common to parts of two level III ecoregions in western Arkansas—the Arkansas Valley and Ouachita Mountains. Fifty-two lakes were considered. A screening process that relied on land-use data was followed by reconnaissance water-quality sampling, and two lakes from each ecoregion were selected for intensive water-quality sampling. Our data suggest that Spring Lake is a suitable reference lake for the Arkansas Valley and that Hot Springs Lake is a suitable reference lake for the Ouachita Mountains. Concentrations for five nutrient constituents—orthophosphorus, total phosphorus, total kjeldahl nitrogen, total nitrogen, and total organic carbon—were lower at Spring Lake on all nine sampling occasions and transparency measurements at Spring Lake were significantly deeper than measurements at Cove Lake. For the Ouachita Mountains ecoregion, water quality at Hot Springs Lake slightly exceeded that of Lake Winona. The most apparent water-quality differences for the two lakes were related to transparency and total organic carbon concentrations, which were deeper and lower at Hot Springs Lake, respectively. Our results indicate that when nutrient concentrations are low, transparency may be more valuable for differentiating between lake water quality than chemical constituents that have been useful for distinguishing between water-quality conditions in mesotrophic and eutrophic settings. For example, in this oligotrophic setting, concentrations for chlorophyll a can be less than 5 μg/L and diurnal variability that is typically associated with dissolved oxygen in more productive settings was not evident.  相似文献   

2.
Water quality of least-impaired lakes in eastern and southern Arkansas   总被引:1,自引:0,他引:1  
A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.  相似文献   

3.
The present study deals with the limnobiotic status of three selected lakes of Himachal Pradesh using physicochemical and biological parameters (especially phytoplankton and zooplankton) over a period of 2 years. One hundred forty-eight species belonging to nine groups of phytoplankton and 79 species belonging to five groups of zooplankton were identified from the lakes. Trophic level and the pollution status of the lakes were assessed upon the basis of Shannon diversity index (H′), species richness index (S), and physicochemical parameters. Plankton population size was correlated with biotic and abiotic parameters (pH, alkalinity, temperature, dissolved oxygen, transparency, phosphate, chloride, and nitrate). The present investigation revealed that the distribution of plankton species depended upon the physicochemical parameters of the environment. Based on water quality standards given by the Central Pollution Control Board, the water quality was between “A–B” at Prashar wetland, “C–D” at Kuntbhyog Lake, and “D–E” at Rewalsar Lake. The results from the present study indicated that the potential of planktons as bioindicators of trophic status is very high.  相似文献   

4.
In this study, we coupled a three-dimensional hydrodynamic model with an ecosystem model and applied it to the shallow complex floodplain wetland of Chini Lake in Malaysia. Our objective was to provide a better understanding of the lake’s ecosystem dynamics under different forcing mechanisms. Simulations and validation were performed over a dry month period. Wind speed ranged between 0 and 7.7 m s?1, whilst air temperature ranged between 22.0 and 35.6 °C. Advective transport driven by wind stress was the dominant physical force that shaped the water quality variations during the dry season. Convective circulation intermittently influenced the circulation during calm conditions. Nutrient concentration and stratification of dissolved oxygen (DO) varied between the lakes. Wind events saw patterns of the surface DO concentrations move spatially in the direction of the wind. The ecosystem model simulation suggested that the water quality in Chini Lake was influenced by macrophyte production, although the dissolved and particulate organic carbon accounted for the major fraction of organic matter content in the lake.  相似文献   

5.
洮滆水系湖库富营养化生态风险的特点与比较   总被引:3,自引:0,他引:3       下载免费PDF全文
茅东水库、长荡湖、涌湖、太湖竺山湾是洮滆水系从上游到下游排列的4大典型湖库,2008年的监测分析表明,氮、磷是该水系湖库富营养化的主要污染因子,并沿流域呈加剧趋势,上下游TP质量浓度为0.081~0.296 mg/L,差异小,而TN质量浓度为0.314~5.67 mg/L,差异大,长荡湖到涌湖是洮滆水系首要污染物TN快...  相似文献   

6.
In response to the recent focus by the U.S. EnvironmentalProtection Agency on bioassessment of lakes, a multimetric index was developed for New Jersey lakes and reservoirs using benthicmacroinvertebrates. Benthic samples were collected fromreference and impaired lakes with muck and intermediate sedimentsin central and northern New Jersey during summer 1997. We used astepwise process to evaluate properties of candidate metrics andselected five for the Lake Macroinvertebrate Integrity Index(LMII): Hilsenhoff Biotic Index (HBI), percent chironomidindividuals, percent collector-gatherer taxa, percentoligochaetes/leeches, and number of Diptera taxa. We scoredmetrics as the fraction of the best expected value (based on allsites) achieved at a site and summed them into the LMII. Evaluation of the LMII showed that it discriminated well betweenreference and impaired lakes and was strongly related to severalpotential stressors. Chemical and physical gradients distinguished between reference and impaired lakes, and the LMIIsummarized these gradients well. The LMII corresponded stronglywith land use, but some lakes with more urban land use stillachieved high scores. Based on a power analysis, the ability ofthe LMII to detect differences in condition was sensitive to thenumber of samples from each lake.  相似文献   

7.
The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km2 in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km2 (42.64 %) during the study period (1875–2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.  相似文献   

8.
Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India   总被引:1,自引:0,他引:1  
A systematic investigation of variations in some nutrient levels at Pandu Lake from August 2002 to July 2004 was carried out. The untreated domestic wastes from various parts of Bodhan town are directly discharged into Pandu Lake leading to gross pollution. Therefore present investigation was under taken to assess the magnitude of sewage pollution by monitoring key water quality parameters dissolved oxygen, biological oxygen demand, alkalinity, calcium, nitrates and phosphates etc. Monthly water samples were collected from three different sampling stations. Low Dissolved oxygen and high biological oxygen demand, elevated Nitrates and Phosphates levels were found, which gives the information about conversion of this water body from oligotrophic to eutrophic nature. Phosphates were found to be in the range of 0.9 to 4.0 mg/L. Nitrates were found to be higher in Pandu Lake and their number is more in summer, and suitable explanation was given. Nitrates were found to be in range between 24.8mg/L to 71.2mg/L. Data on various chemical characteristics vary at different sites in different months in Pandu Lake. Some of the characteristics like Dissolved Oxygen, Biological Oxygen Demand, Nitrates, Phosphates and nutrient loading are contributing to eutrophication process in this lake and the lake seems to be eutrophic through out the year.  相似文献   

9.
10.
以《湖北省水环境遥感监测示范系统》为数据处理平台,对2012—2014年湖北省大东湖水网、梁子湖水系和汤逊湖水系共计12个湖泊的水质类别以及营养状态级别进行遥感监测,并对比实测数据进行精度评价。结果表明:遥感监测的梁子湖、豹澥湖和严西湖水质相对较好,杨春湖、北湖和南湖水质相对较差且富营养化状况较为严重。该系统能很好地实现对水质优良达标湖泊以及富营养化湖泊的识别。对示范区域各湖泊水质类别和营养状态级别的遥感监测,基本上能满足业务化运行的需求。个别湖泊遥感监测精度较低,主要表现为遥感监测的湖泊水质类别和营养状态级别均要优于实测的结果。系统对于面积相对较大的湖泊遥感监测精度更高。  相似文献   

11.
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.  相似文献   

12.
We quantified potential biases associated with lakes monitored using non-probability based sampling by six state agencies in the USA (Michigan, Wisconsin, Iowa, Ohio, Maine, and New Hampshire). To identify biases, we compared state-monitored lakes to a census population of lakes derived from the National Hydrography Dataset. We then estimated the probability of lakes being sampled using generalized linear mixed models. Our two research questions were: (1) are there systematic differences in lake area and land use/land cover (LULC) surrounding lakes monitored by state agencies when compared to the entire population of lakes? and (2) after controlling for the effects of lake size, does the probability of sampling vary depending on the surrounding LULC features? We examined the biases associated with surrounding LULC because of the established links between LULC and lake water quality. For all states, we found that larger lakes had a higher probability of being sampled compared to smaller lakes. Significant interactions between lake size and LULC prohibit us from drawing conclusions about the main effects of LULC; however, in general lakes that are most likely to be sampled have either high urban use, high agricultural use, high forest cover, or low wetland cover. Our analyses support the assertion that data derived from non-probability-based surveys must be used with caution when attempting to make generalizations to the entire population of interest, and that probability-based surveys are needed to ensure unbiased, accurate estimates of lake status and trends at regional to national scales.  相似文献   

13.
Microcystins (MCYSTs) are toxins produced by cyanobacteria in aquatic environment and are of high potential risk to aquatic organisms. The physiological responses and pathobiological developments that they elicit in fish have been extensively studied, mainly through acute toxicity experiments. This study was designed to examine the seasonal fluctuation of biochemical markers of oxidative stress in different tissues of a natural population of Cyprinus carpio inhabiting a shallow Mediterranean lake, along with the respective MCYSTs concentrations in blood and tissues at environmentally relevant MCYSTs values. MCYSTs content was assessed in liver, kidney, intestine, brain and muscle along with the MCYSTs in lake water and scum applying ELISA technique. Catalase activity, GSH/GSSH relative concentrations and lipid peroxidation were used as biochemical markers. Our results suggest that common carp of Lake Pamvotis exposed to naturally fluctuating concentrations of MCYST in water and scum contained stably high MCYST concentrations in all tissues that might pose a threat to public health. Liver and kidney were the primary target organs. Tissue concentrations did not correlate with the response of any of the elements of the antioxidant defence system. Hepatic catalase, GSH content and TBARS in all tissues tested followed the fluctuations of major limnological parameters, i.e. water temperature and oxygen concentration, chlorophyll-a, MCYST in water and scum, suggesting that they should be cautiously used to monitor exposure to MCYSTS in natural freshwater ecosystems.  相似文献   

14.
Eutrophication has become a serious threat to the lake systems all over the world. This is mainly due to the pollution caused by anthropogenic activities. Carlson trophic state index (CTSI) is commonly used for the classification of trophic conditions of surface waters. The study is conducted to assess the trophic status of a tropical lake (Akkulam-Veli lake, Kerala, India) using CTSI based on Secchi disc depth (SD), total phosphorus (TP) and chlorophyll-a. The TSI values based on SD and TP are high (>70), indicating the hypereutrophic state which needs urgent action for the restoration of the fragile ecosystem. The higher TP in both lakes, and the lower value of chlorophyll-a in the Akkulam part, warrant explanation, are discussed here. The influence of other biochemical parameters in both the Akkulam and the Veli part of the lake has been assessed. Correlation analysis is conducted to study the effect of various water quality parameters. The variation in the water quality before and after the opening of sand bar is studied using paired t test. As almost all the lakes in the world are experiencing similar situation of extinction, this study is helpful to have an insight in the hydrochemistry of the lake as well as to identify the worst affected areas of the lakes.  相似文献   

15.
Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S(eq), G and T90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.  相似文献   

16.
There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-“tracking” methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl? dm?3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.  相似文献   

17.
Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of lentic ecosystem (lakes and reservoirs) pollution due to industrial effluent discharge. In this study, nine metals and 15 physicochemical parameters, collected from four sampling sites in a tropical lake receiving the discharge from thermal power plant, coal mine, and chloralkali industry, during the years from 2004 to 2005, were analyzed. For greater efficacy in monitoring of heavy metals, particle-induced X-ray emission has been used during present investigation. Different statistical techniques like analysis of variance, Pearson correlation, principal component analysis, and factor analysis were employed to evaluate the seasonal correlations of physicochemical parameters. Most of the metals and physicochemical parameters monitored in the present study exhibited high spatial and temporal variability. Pertaining to metal pollution, the most polluted site was Belwadah, i.e., waters and sediments had the highest concentration of all the relevant metals. The reference site was characterized by the presence of low concentrations of metals in waters and in sediments. Based on the high metal concentration recorded in lake ambient, drinking, bathing, and irrigation water should not be used by the local people at the effluent discharge points.  相似文献   

18.
The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on a probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ever studied in predator and bottom-dwelling fish species. The U.S. Environmental Protection Agency (USEPA) implemented the study in cooperation with states, tribal nations, and other federal agencies, with field collection occurring at 500 lakes and reservoirs over a four-year period (2000–2003). The sampled lakes and reservoirs were selected using a spatially balanced unequal probability survey design from 270,761 lake objects in USEPA’s River Reach File Version 3 (RF3). The survey design selected 900 lake objects, with a reserve sample of 900, equally distributed across six lake area categories. A total of 1,001 lake objects were evaluated to identify 500 lake objects that met the study’s definition of a lake and could be accessed for sampling. Based on the 1,001 evaluated lakes, it was estimated that a target population of 147,343 (±7% with 95% confidence) lakes and reservoirs met the NLFTS definition of a lake. Of the estimated 147,343 target lakes, 47% were estimated not to be sampleable either due to landowner access denial (35%) or due to physical barriers (12%). It was estimated that a sampled population of 78,664 (±12% with 95% confidence) lakes met the NLFTS lake definition, had either predator or bottom-dwelling fish present, and could be sampled.  相似文献   

19.
Spatial structure analysis and kriging analysis have been identified to be useful tools in illustrating the spatial patterns of variables. Taihu Lake is one of the largest fresh water lakes in China, and has suffered serious eutrophication in recent years due to the rapid economic development and growing environmental pollution in the Taihu Catchment. In this paper, spatial structural analysis, kriging interpolation and eutrophication assessment were carried out for chlorophyll a in the lake. Studies show that spherical model could be applied to fit all experimental variograms. Positive nuggets were observed for three directions except NE–SW direction. The variograms show some anisotropy with anisotropic ratio falling within 1.76. The spatial structural patterns of chlorophyll a in the lake were affected by factors such as distribution of pollution sources, water flow and wind. Two-dimensional ordinary block kriging was applied for interpolation process. An eutrophication assessment map was also made based on a water-quality evaluation standard. Results show that the content of chlorophyll a in Taihu Lake was quite high. The whole lake has suffered serious eutrophication. However, the eutrophic situation varied in space. Higher contents of chlorophyll a appeared mainly in the northern part of the lake.  相似文献   

20.
We develop the conceptual and empirical basis for a multi-level ecosystem indicator for lakes. The ratio of total N to total P in lake water is influenced or regulated by a variety of ecosystem processes operating at several organizational levels and spatial scales: atmospheric, terrestrial watershed, lake water, and aquatic community. The character of the pelagic zooplankton assemblage is shown to be well correlated with lake water N:P ratio, with species assemblages arrayed along the N:P gradient in accordance with resource supply theory. Features of specific zooplankton assemblages or deviations from expected assemblages can provide information useful for lake managers, such as the efficiency of pollutant transfer and biomagnification of toxins, loss of cool-water refuge areas, degree of zooplanktivory and food web simplification related to changes in fisheries, and assemblage changes due to anthropogenic acidification. Evaluation of the influence of watershed land use, forest cover and vegetation type, atmospheric deposition, and basin hydrology on the supply of N and P to lake ecosystems provides a means to couple changes in the terrestrial environment to potential changes in aquatic ecosystems. Deviations of lake water N:P values from expected values based on analysis of watershed and lake basin characteristics, including values inferred from appropriate diatom microfossil deposits, can provide an independent validation and baseline reference for assessing the extent and type of disturbance. Therefore, the N:P ratio of lake water can serve as a potentially useful and inexpensively obtained proxy measure for assessing changes or shifts in the biological and nutrient status of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号