首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies demonstrate that natural populations of a group of water striders (Heteroptera: Gerridae) that share a common mating system are characterized by weak assortative mating by size and by large sizes of mating males and females relative to single individuals. This study presents an experimental assessment of the components of mating that may contribute to these mating patterns. The effects of male and female body size on each of three components of mating were studied in three water strider species in the laboratory. Large females of all three species mated more frequently, copulated for longer and were guarded longer than small females. Large males mated more frequently than small males in all three species, and also guarded females for longer in the two species where the average of mate guarding was long. However, we found an antagonistic effect of male size on copulation duration: small males copulated for longer than large males in all three species. We show that the combined effects of these size biases mimic the mating patterns found in the wild, e.g. weak and variable assortative mating, and stronger and less variable size ratios of mating versus non-mating females relative to males. We suggest that the antagonistic effects of male size on copulation and guarding duration may be a key source of interpopulational variation in assortative mating and sexual selection on male size. Further, neither spatial or temporal covariation in size, nor mechanical constraints, caused the assortative mating observed here in this group of water striders. Some combination of male and female choice (either active or passive forms) of large mates and male-male exploitation competition for mates play potentially important roles in producing population level assortative mating in water striders. Received: 17 March 1995/Accepted after revision: 28 October 1995  相似文献   

2.
The resolution of intersexual conflict over mating should be dependent on the current state of each individual. In this study, I used a factorial design to examine the influence of two physiological factors, sperm depletion and food deprivation, on resistance to mating by females of the water strider, Aquarius remigis. Females employ several different mate-resisting tactics during an encounter with a male. Five measures of female resistance to mating were identified: jumping, rolling, dunking, time spent dunking, and struggle duration. Jump, roll, and dunk rates were highly correlated with each other and combined into one metric of resistance to mating (PC1) using principal components analysis. Time per dunk (T/D) and struggle duration were also analyzed. Discrete male behaviors during the struggle could not be identified. Two measures of female resistance, PC1 and T/D, were significantly lower in sperm-depleted females than in sperm-replenished females. Struggle duration did not differ between the two treatments. Starvation had no effect on any of the measures of resistance. Sperm depletion significantly enhanced the probability of mating (54% vs. 24% for replenished females), while starvation had no effect on the probability of mating. I pooled all the females and compared females that mated with those that did not mate. Nonmating females resisted significantly more than mating females in all three measures of resistance. Path analysis indicated that PC1 was the only measure of resistance that was significantly negatively related to the probability of mating. Almost half (46%) of sperm-depleted females showed no resistance to males, while only 3% of sperm-replenished females were nonresistant. When nonresisters were removed from the analysis, sperm depletion had no effect on any of the measures of female resistance to mating and no effect on the probability of mating. In A. remigis, female resistance appears to be a yes/no phenomenon with respect to sperm depletion and not affected directly by starvation. Received: 2 September 1994/Accepted after revision: 9 September 1995  相似文献   

3.
Knowing how far away animals can detect food has important consequences for understanding their foraging and social behaviors. As part of a broader set of field experiments on primate foraging behavior, we set out artificial feeding platforms (90 × 90 cm or 50 × 50 cm) throughout the home range of one group of 22 brown capuchin monkeys, at sites where they had not seen such platforms previously. Whenever the group approached such a new platform to within 100 m, we recorded the group's direction and speed of approach, and the identity and distance from the platform of the group member that detected the platform or came closest to it without detecting it. We used logistic regression on these data to examine the effects of group movement speed, platform size and height, and focal individual age and sex on the probability of detecting the platform as a function of distance. Likelihood of detecting a platform decreased significantly at greater distances – the probability of detecting a platform reached 0.5 at 41 m from the group's center and 25.5 m from the nearest group member. These results show that detectability of platforms by the entire group (9 adults, 13 juveniles) was less than twice that for single group members. Detectability at a given distance decreased severely as the group moved faster; at their fastest speed, individuals had to approach a platform to within less than 10 m to find it. The large platforms were significantly more likely to be detected than the small ones, suggesting that increased use of larger food patches by wild primates may not necessarily reflect foraging preferences. Received: 20 May 1996 / Accepted after revision: 5 April 1997  相似文献   

4.
Social insect colonies need to explore and exploit multiple food sources simultaneously and efficiently. At the individual level, this colony-level behaviour has been thought to be taken care of by two types of individual: scouts that independently search for food, and recruits that are directed by nest mates to a food source. However, recent analyses show that this strict division of labour between scouts and recruits is untenable. Therefore, a modified concept is presented here that comprises the possible behavioural states of an individual forager (novice forager, scout, recruit, employed forager, unemployed experienced forager, inspector and reactivated forager) and the transitions between them. The available empirical data are reviewed in the light of both the old and the new concept, and probabilities for the different transitions are derived for the case of the honey-bee. The modified concept distinguishes three types of foragers that may be involved in the exploration behaviour of the colony: novice bees that become scouts, unemployed experienced bees that scout, and lost recruits, i.e. bees that discover a food source other than the one to which they were directed to by their nest mates. An advantage of the modified concept is that it allows for a better comparison of studies investigating the different roles performed by social insect foragers during their individual foraging histories. Received: 29 December 1999 / Revised: 25 February 2000 / Accepted: 16 October 2000  相似文献   

5.
The red bishop (Euplectes orix) is a highly polygynous and colonial weaverbird. Males construct several nests within their territories to which they try to attract females, and females are solely responsible for incubation and raising offspring. In this paper, we describe the characteristics of the red bishop’s mating system as a biological market and investigate the role of nests built by males as a traded commodity in a mating market. As timing of breeding in red bishops in arid and semi-arid zones depends on rainfall patterns which are often unpredictable, there are temporal changes in demand for and supply of nests within a breeding season, with breeding activities of males and females being highly synchronised. We found that males increased their nest-building speed with increased female breeding activity independently of rainfall, indicating that supply follows demand in this mating market. The supply of nests was always larger than the demand for nests. Construction costs for nests increased with demand for nests as indicated by shorter nest-building duration and shorter building delays between two consecutively built nests at times of high breeding activity. Males as a trading class are chosen according to the age of their nests offered, with young nests having a higher probability of being accepted by females. Furthermore, female choosiness with regard to nest age decreased when their own market value decreased, as predicted by biological market theory. The temporal changes of breeding activity together with the female preference for young and fresh nests require that males quickly adjust nest-building activity to varying female demand for new nests. However, males with a better adjustment of building speed to female breeding activity did not gain higher mating success.  相似文献   

6.
7.
Environmental Chemistry Letters - Most fossil fuel-derived polymers used for food packaging are non-biodegradable and induce pollution by microplastic, calling for safer material. Here we review...  相似文献   

8.
The primates of Madagascar (Lemuriformes) deviate from fundamental predictions of sexual selection theory in that polygynous species lack sexual dimorphism, have even adult sex ratios and often live in female-dominated societies. It has been hypothesized that intrasexual selection in these species is either reduced or primarily focused on traits related to scramble competition. The goal of this study was to examine these hypotheses by studying the mating system of a solitary nocturnal species, Mirzacoquereli. During a 4-year field study in western Madagascar, I captured and followed 88 individually marked animals. I found that adult males were significantly larger than females, providing the first evidence for sexual size dimorphism in lemurs. In addition, the adult sex ratio was biased in favour of females in 3 out of 4 years. There was no significant sex difference in canine size, however. Males showed pronounced seasonal variation in testis size with a 5-fold increase before and during the short annual mating season. During the mating season, males had more injuries than females and more than quadrupled their home ranges, overlapping with those of more than ten females, but also with about the same number of rivals. Only about one social interaction per 10 h of observation was recorded, but none of them were matings. Together, these results indicate that these solitary lemurs are clearly subject to intrasexual selection and that male-male competition is primarily, but not exclusively, of the scramble type. In addition, they suggest that the above-mentioned idiosyncracies may be limited to group-living lemurs, that social systems of solitary primates are more diverse than previously thought, and that the temporal distribution of receptive females is responsible for this particular male mating strategy. Received: 11 January 1997 / Accepted after revision: 18 April 1997  相似文献   

9.
We used multi-locus DNA fingerprinting to characterise the genetic mating system of the socially monogamous yellow warbler (Dendroica petechia). Over 2 years there were no instances of brood parasitism, but 59% of families (n = 90) contained extrapair sired young and 37% of offspring (n = 355) were of extra-pair paternity. Most hypotheses for extra-pair mating in monogamous species assume a paternity benefit to extra-pair sires, and focus on the benefit(s) to females. However, the assumption of male benefit has been little tested. Among yellow warblers, known extra-pair sires were just as likely to be cuckolded as any male in the population, and there was at least one reciprocal exchange of extra-pair paternity. Nevertheless, among known extra-pair sires, the paternity gains from extra-pair paternity were, on average, greater than the losses in their own families. These results show there is a paternity benefit to certain males. However, the benefit is not absolute but relative and therefore more difficult to measure. The results also suggest that patterns of extra-pair fertilisation are not determined by female choice alone. Most confirmed extra-pair mates were territorial neighbours, but some resided as far as three territories apart, and greater spatial separation was implied in other cases. Thus, the opportunity for extra-pair mating is great. We estimate that as a result of extra-pair fertilisations, variance in male mating success is increased somewhere between 3-fold and 15-fold over that which would result from within-pair reproduction alone. These findings affirm the potential importance of extra-pair reproduction for sexual selection in monogamous species and they support earlier suggestions that extra-territorial forays by male yellow warblers are for the purpose of extra-pair mating.  相似文献   

10.
Food availability is expected to influence the relative cost of different mating tactics, but little attention has been paid to this potential source of adaptive geographic variation in behavior. Associations between the frequency of different mating tactics and resource availability could arise because tactic use responds directly to food intake (phenotypic plasticity), because populations exposed to different average levels of food availability have diverged genetically in tactic use, or both. Different populations of guppies (Poecilia reticulata) in Trinidad experience different average levels of food availability. We combined field observations with laboratory “common garden” and diet experiments to examine how this environmental gradient has influenced the evolution of male mating tactics. Three independent components of variation in male behavior were found in the field: courtship versus foraging, dominance interactions, and interference competition versus searching for mates. Compared with low-food-availability sites, males at high-food-availability sites devoted more effort to interference competition. This difference disappeared in the common garden experiment, which suggests that it was caused by phenotypic plasticity and not genetic divergence. In the diet experiment, interference competition was more frequent and intense among males raised on the greater of two food levels, but this was only true for fish descended from sites with low food availability. Thus, the association between interference competition and food availability in the field can be attributed to a genetically variable norm of reaction. Genetically variable norms of reaction with respect to food intake were found for the other two behavioral components as well and are discussed in relation to the patterns observed in the field. Our results indicate that food availability gradients are an important, albeit complex, source of geographic variation in male mating strategies.  相似文献   

11.
We placed carcasses in three different vegetation types in the heterogeneous savannas of central Venezuela to investigate the role of social dominance in habitat use by flocking migrant and resident turkey vultures (Cathartes aura meridionalis and C. a. ruficollis). Migrants foraged primarily in savanna habitats while residents foraged almost exclusively in gallery forest. In the gallery forest residents discovered carrion first significantly more often than migrants, despite there being equal densities of residents and migrants foraging over this habitat. Because residents fed in smaller groups than migrants at carcasses they had higher feeding rates. There was also a negative relationship between group sizes of residents and migrants. The feeding rate of residents declined in response to increased group size of migrants, but group size of residents had no effect. Migrant group size also had a greater effect on resident feeding rates than king vulture presence or absence. When the effect of migrant and resident group size on feeding rates in migrants was compared, the most significant factor was migrant group size. A second analysis showed that both resident group size and presence or absence of king vultures had a significant effect on feeding rates in migrants. Rates of agonistic encounters in migrant and resident turkey vultures increased weakly in relation to group size. However, there was an increase in residents' encounter rate with migrants in relation to increased migrant group size; there was no difference in resident encounter rates with other residents in relation to resident group size. Migrants dominated residents in almost all agonistic interactions over carcasses. We suggest that savanna habitats were less attractive to residents for foraging because they held larger groups of migrants.  相似文献   

12.
Some recently emerged brook charr (Salvelinus fontinalis) inhabiting still-water pools along the sides of streams are sedentary and eat crustaceans from the lower portion of the water column. Others are more active and eat insects from the upper portion of the water column. We provide evidence that this divergent foraging behavior reflects short-term divergent selection brought about by intraspecific competition in the presence of alternative food sources. Rates of encounters and interactions between individuals were density dependent, and encounter and interaction events were closely timed with prey capture attempts. In addition, aggressive fish made more foraging attempts per minute than nonaggressive fish. Aggressive fish were also either inactive or very active, while nonaggressive fish exhibited intermediate levels of activity. Growth rate potential, an important component of fitness during the early life stages of brook charr, was assessed using tissue concentrations of RNA and found to be highest for sedentary fish and for active fish making frequent foraging attempts, and lower for fish exhibiting intermediate levels of activity. Our findings support contentions that individual behavior plays an important role during initial steps in the evolution of resource polymorphisms. Received: 27 July 1998 / Accepted after revision: 16 November 1998  相似文献   

13.
● Blackwater is the main source of organics and nutrients in domestic wastewater. ● Various treatment methods can be applied for resource recovery from blackwater. ● Blackwater treatment systems of high integration and efficiency are the future trend. ● More research is needed for the practical use of blackwater treatment systems. Blackwater (BW), consisting of feces, urine, flushing water and toilet paper, makes up an important portion of domestic wastewater. The improper disposal of BW may lead to environmental pollution and disease transmission, threatening the sustainable development of the world. Rich in nutrients and organic matter, BW could be treated for resource recovery and reuse through various approaches. Aimed at providing guidance for the future development of BW treatment and resource recovery, this paper presented a literature review of BWs produced in different countries and types of toilets, including their physiochemical characteristics, and current treatment and resource recovery strategies. The degradation and utilization of carbon (C), nitrogen (N) and phosphorus (P) within BW are underlined. The performance of different systems was classified and summarized. Among all the treating systems, biological and ecological systems have been long and widely applied for BW treatment, showing their universality and operability in nutrients and energy recovery, but they are either slow or ineffective in removal of some refractory pollutants. Novel processes, especially advanced oxidation processes (AOPs), are becoming increasingly extensively studied in BW treatment because of their high efficiency, especially for the removal of micropollutants and pathogens. This review could serve as an instructive guidance for the design and optimization of BW treatment technologies, aiming to help in the fulfilment of sustainable human excreta management.  相似文献   

14.
In social insects, the decision to exploit a food source is made both at the individual (e.g., a worker collecting a food item) and colony level (e.g., several workers communicating the existence of a food patch). In group recruitment, the recruiter lays a temporary chemical trail while returning from the food source to the nest and returns to the food guiding a small group of nestmates. We studied how food characteristics influence the decision-making process of workers changing from individual retrieving to group recruitment in the gypsy ant Aphaenogaster senilis. We offered field colonies three types of prey: crickets (cooperatively transportable), shrimps (non-transportable), and different quantities of sesame seeds (individually transportable). Colonies used group recruitment to collect crickets and shrimps, as well as seeds when they were available in large piles, while small seed piles rarely led to recruitment. Foragers were able to “measure” food characteristics (quality, quantity, transportability), deciding whether or not to recruit, accordingly. Social integration of individual information about food emerged as a colony decision to initiate or to continue recruitment when the food patch was rich. In addition, group recruitment allowed a fast colony response over a wide thermal range (up to 45°C ground temperature). Therefore, by combining both advantages of social foraging (group recruitment) and thermal tolerance, A. senilis accurately exploited different types of food sources which procured an advantage against mass-recruiting and behaviorally dominant species such as Tapinoma nigerrimum and Lasius niger.  相似文献   

15.
Abstract

Contaminated food chain is a serious contender for arsenic (As) uptake around the globe. In Nadia, West Bengal, we trace possible means of transfer of As from multiple sources reaching different trophic levels, and associated seasonal variability leading to chronic As uptake. This work considers possible sources-pathways of As transfer through food chain in rural community. Arsenic concentration in groundwater, soil, rice, and vegetable-samples collected detected in different harvest seasons of 2014 and 2016. Arsenic level in shallow groundwater samples ranged from 0.1 to 354?µg/L, with 75% of the sites above the prescribed limit by WHO (10?µg/L) during the boro harvest season. High soil As content (~20.6?mg/kg), resulted in accumulation of As in food crops. A positive correlation in As conc. with increase over period in all sites indicating gradual As accumulation in topsoil. Unpolished rice samples showed high As content (~1.75?mg/kg), polishing reduced 80% of As. Among vegetables, the plant family Poaceae with high irrigation requirements and Solanaceae retaining high moisture, have the highest levels of As. Contaminated animal fodder (Poaceae) and turf water for cattle are shown to contaminate milk (0.06 to 0.24?µg/L) and behoves strategies, practices to minimize As exposure.  相似文献   

16.
We integrate new challenges to thinking about resource markets and sustainable resource use policies in a general framework. The challenges, emerging from six papers that JEEM publishes in a special issue, are (i) demand uncertainty and stockpiling, (ii) international trade and resource dependence, (iii) deforestation, and (iv) intertemporal effects of climate change policies (“Green Paradox”). We discuss new insights and results on these issues by fitting them into the Hotelling model of non-renewable resource depletion.  相似文献   

17.
In population modeling, a considerable level of complexity is often required to provide trustworthy results, comparable with field observations. By assuring sufficient detail at the individual level while preserving the potential to explore the consequences at higher levels, individual-based modeling may thus provide a useful tool to investigate dynamics at different levels of organization. Still, population dynamics resulting from such models are often at odds with observations from the field. This may be partly caused by a lack of focus on the individual dynamics under conditions of food stress and starvation. I developed a physiologically structured, individual-based simulation model to investigate life history of Daphnia and its effect on population dynamics in response to the productivity of the system. In verifying model behavior with available literature data on life history and physiology, I paid special attention to the dynamics of food intake and the verification of individual level results under conditions of food limitation and starvation. I show that the maximum filtering rates under low food levels used in the current model are much closer to measured filtering rates than the ones used in other models. Being consistent with results on physiology and life history from experiments at a wide range of food availability (including starvation), the model generates low amplitude or high amplitude population density cycles depending on the productivity of the system, as observed in field and experimental populations of Daphnia and with the minimum population densities being one to two orders of magnitude lower in the high amplitude than in the low amplitude cycles. To generate results which are not only qualitatively but also quantitatively comparable to experimental and field observations, however, a crowding effect on the filtering response has to be incorporated in the model.  相似文献   

18.
Current rates of climate change require organisms to respond through migration, phenotypic plasticity, or genetic changes via adaptation. We focused on questions regarding species’ and populations’ ability to respond to climate change through adaptation. Specifically, the role adaptive introgression, movement of genetic material from the genome of 1 species into the genome of another through repeated interbreeding, may play in increasing species’ ability to respond to a changing climate. Such interspecific gene flow may mediate extinction risk or consequences of limited adaptive potential that result from standing genetic variation and mutation alone, enabling a quicker demographic recovery in response to changing environments. Despite the near dismissal of the potential benefits of hybridization by conservation practitioners, we examined a number of case studies across different taxa that suggest gene flow between sympatric or parapatric sister species or within species that exhibit strong ecotypic differentiation may represent an underutilized management option to conserve evolutionary potential in a changing environment. This will be particularly true where advanced‐generation hybrids exhibit adaptive traits outside the parental phenotypic range, a phenomenon known as transgressive segregation. The ideas presented in this essay are meant to provoke discussion regarding how we maintain evolutionary potential, the conservation value of natural hybrid zones, and consideration of their important role in adaptation to climate.  相似文献   

19.
Neither size nor breeding color correlated with spawning success of male orangethroat darters, Etheostoma spectabile (Pisces, Percidae), under natural field conditions. When females were presented experimentally with a simultaneous choice they spent no more time in proximity to large than small males, and were subsequently no more likely to spawn with large than with small males. Females also displayed no preference for bright versus dull males. Males and females did not differ significantly in size. Etheostoma spectabile may lack sexual size dimorphism as a result of the lack of female choice for size and the ineffectiveness of male attempts to monopolize females, or selection may be for increased size of females. Males are not dwarfs because of sperm competition. Contest competition among males appeared to be important in initiating spawnings but many males obtained spawnings by participating in ongoing spawning events. Etheostoma spectabile is an example of a sexually dimorphic species with no evident female preference for male size or color.  相似文献   

20.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号