首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Qin Xu 《毒物与环境化学》2013,95(1-4):183-196
Effects of the heavy metals zinc and cadmium on the free amino acid (FAA) pool of Gammarus pulex were studied at different metal concentrations and combinations as well as different exposure times. The dominant effect of these two metals was the reduction of most free amino acids and the whole FAA pool, except in the 10‐day low zinc and cadmium concentration exposures which resulted in a rise of free amino acid pool.

Among the free amino acids, the most sensitive to zinc exposure, were alanine, glutamic acid, arginine, and taurine; valine, leucine, asparagine, and isoleucine were among the most sensitive to cadmium. No predictable changes of individual free amino acids were shown in the mixed metals exposures. Elevation of taurine concentration was constant in seven of the eight treatments, it is suggested that this elevation may be related to the hepatopancreatic damage observed and induced synthesis of metallothioneins.  相似文献   

2.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

3.
We assessed the ontogenetic changes in protein content and free amino acids (FAA) in eggs and early larvae of Engraulis ringens (anchoveta) off central Chile on different dates during the spawning season. On all sampling dates, a reduction in embryonic yolk-sac volume, proteins and FAA concentrations occurred during development. Protein electrophoresis (SDS–PAGE) of eggs and larvae showed at least 22 protein bands: 11 were consumed early and not detected after hatching. The proportion of essential FAA (EFAA) was higher than the proportion of non-essential FAA (NEFAA) in early eggs and in 7 day-old larvae (82.5-73% EFAA respectively). During egg development, the FAA pool was dominated by leucine, alanine and lysine, three amino acids contributing 35–44% of the total FAA in eggs. During larval development, histidine was the most abundant FAA. In July, total FAA constituted 13–18% of the egg dry weight. A similar proportion (45–51%) occurred in July between protein plus FAA and total lipids. The differences in egg size during the spawning season along with variability in batch composition suggests that the female spawning condition is a major factor determining egg quality and early offspring success.  相似文献   

4.
Free amino acids (FAA) and protein have been measured in whole laboratory-readed halibut larvae and on dissected individuals separated into yolk and body compartments. At hatching both FAA and protein are mainly located in the yolk compartment. During the first 12 d of the yolk-sac stage more than 70% of the FAA pool disappeared from the yolk without any significant changes in the yolk protein pool. This suggests different uptake mechanisms for FAA and protein from the yolk, and a sequential utilisation of the endogeneous reservoirs of free and protein amino acids in Atlantic halibut larvae. The data suggest that in the early yolk-sac stage FAA enter the embryo from the yolk and are utilised both for energy and protein synthesis. Later on when the free pool cannot fulfil the nutritional requirements, additional amino acids are recruited from yolk protein. Of the total amino acids (free + protein amino acids) present at hatching ca. 60% will be used as precursors for body protein synthesis while the remaining 40% are used as fuel in the larval energy metabolism.  相似文献   

5.
Using the starvation technique, changes in protein and free amino acids were examined in Penaeus esculentus Haswell collected from Moreton Bay, Australia, by trawling in 1985. Prawns of 17.7±0.26 g wet weight were held at 25°C until 2 d after moulting. Groups of seven or eight were then starved fro 5, 10, or 15 d, with appropriate control groups. At the end of each period, ecreted amino acids were collected for 24 h and whole-muscle amino acids and free amino acids (FAA) g-1 in each prawn were analysed. Concentrations of whole-muscle amino acids showed only minor changes with starvation, but concentrations of many of the FAA changed significantly. Total FAA averaged 1 182±45 mol g-1 dry weight. Individual FAA, in order of abundance, were glycine, arginine, proline, taurine, threonine, hydroxyproline, alanine, glutamic acid, valine, aspartic acid and lysine; the remaining FAA each contributed <0.2% of the total. Only taurine and alanine did not show significant changes with starvation. Concentrations of glycine, arginine, hydroxyproline, glutamic and aspartic acid increased, while those of proline, threonine, valine and lysine decreased with starvation, that of proline approaching zero after 15 d starvation. Excreted amino acid-nitrogen represented <2% of excreted ammonianitrogen ornithine being the most abundant (35%), followed by leucine (22%) and lysine (17%). The relative abundance of excreted amino acids did not correspond with those of the FAA. It is suggested that, as starvation progresses, the muscle protein is progressively hydrolysed, but with the remaining muscle maintaining its amino acid composition. The liberated amino acids enter the FAA pool and become available for energy production. Proline may have an important role as an energy source, but the ability to synthesise proline may be limited, and thus the artificial food of penaeid prawns may be improved by its addition.  相似文献   

6.
The content of free amino acids (FAA) in the cod (Gadus morhua L.) egg is about 200 nmol at spawning, decreasing by about 100 nmol/egg during the egg stage and about 75 nmol/larva during the yolksac larval stage. Together, alanine, leucine, serine, isoleucine, lysine, and valine account for about 75% of the decrease. Ammonium accumulates gradually during the egg stage and is quickly excreted after hatching. The body protein content is maintained during the egg and yolksac larval stages. The measured oxygen uptake of the cod embryo during the egg and yolksac larval stages accounts for about 85% of the oxygen necessary to catabolize the FAA disappearing during this period. Ammonia excretion of the cod embryo, as taken from literature data, is similar to the expected ammonia production from catabolism of the FAA. Our data suggest that FAA are a major substrate for aerobic energy production in cod eggs and yolksac larvae. The implication of this finding for the production of a favourable first-feed for cod and other cultivated marine fish larvae, and for the selection of high quality eggs of marine fishes, is stressed.  相似文献   

7.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

8.
Food availability is highly variable in the ocean. Many species of marine invertebrates have a larval form that depends upon exogenous nutrients for growth, yet there are few biochemical and physiological indices for determining changes in the nutritional status of larvae. In this study, the effects of food availability on biochemical compositions and metabolic processes of larvae of the sea urchin, Strongylocentrotus purpuratus, were determined. Larvae were cultured under different food concentrations (fed-to-excess and unfed) and a suite of biological processes assayed, ranging from measurements at the level of the whole organism to that of specific molecules. These data were normalized to DNA content (an index of cell number) to allow comparisons of physiological rates in larvae of different sizes. Changes in the following were measured during larval growth: free amino acid pool, protein, lipid classes (cholesterol, free fatty acids, hydrocarbons, phospholipids, triacylglycerol), enzyme activities (Na+, K+-ATPase and citrate synthase), and respiration rates. In growing larvae, the two key components that showed differential cell-specific content relative to unfed larvae were glycine in the free amino acid pool and phospholipids. Additionally, several lipid classes were detectable only in fed larvae (cholesterols, free fatty acids, and hydrocarbons). While triacylglycerols were present in eggs and utilized during pre-feeding development, they were not re-accumulated at detectable levels in feeding larvae. Respiration rates, protein content, and enzyme activities were all similar on a cell-specific basis, showing that these variables did not provide useful indices of differences in physiological state between fed and unfed larvae. In contrast, measurements of the cell-specific content of glycine and certain lipid classes did provide useful indices of physiological state of larvae. Application of these indices could potentially allow for determinations of nutritional state of larvae in the ocean.  相似文献   

9.
Contents of free amino acids (FAA), protein and ammonium ions together with rates of ammonia excretion and oxygen consumption were measured in order to study the role of FAA as an energy substrate in developing eggs and larvae of seabass (Lates calcarifer) maintained in seawater (30 ppt) at 28 °C without feeding. Initially eggs contained 25.3 nmol ind−1 of FAA of which 21.5 nmol was rapidly utilised by the developing eggs and larvae during the period up to 40 h post spawning (PS) when nearly all the yolk had been resorbed. During the same period, a net increase in protein content of 1.7 μg ind−1 was observed, indicating that the major part of the amino acids lost from the free pool had been polymerised into body proteins. Assuming that the balance of the FAA after protein synthesis was used entirely for energy metabolism, FAA appeared to be an important energy substrate during the embryonic stages (2 to 16 h PS); after hatching, the contribution of FAA to energy metabolism was less significant. From 50 h PS until the end of the study period at 100 h PS, amino acids derived from somatic protein were used for energy metabolism. For the overall period from just after spawning up to 100 h PS, the data indicate that ca. 14% of the total aerobic energy metabolism was derived from amino acid catabolism. Received: 26 September 1997 / Accepted: 1 April 1998  相似文献   

10.
Glycine was the most abundant free amino acid (FAA) in abdominal muscle of grass shrimp Palaemonetes pugio, accounting for over 50% of the total pool. Arginine, alanine, proline, taurine and serine were also present at relatively high concentrations. Following transfer from 17%. to 2 and 32%. S, new steady-state levels of total FAA were observed at 72 h. Total FAA and the sum of glycine, alanine and proline exhibited a positive correlation with salinity. Exposure to Aroclor 1254 did not have appreciable effects on total FAA levels, indicating that disruption of intracellular osmoregulation was not a major consequence of PCB toxicity. However, changes in individual amino acid concentrations in exposed shrimp were reflective of an altered metabolic state. Glycine, which did not show changes immediately following exposure, underwent large decreases after transfer to PCB-free water and indicated a delayed effect of PCB exposure. A correlation between salinity and the sum of glycine, alanine and proline did not exist in exposed shrimp.  相似文献   

11.
 Free amino acid (FAA) and protein content were measured in various developmental stages of Artemia franciscana, from cysts to Instar III metanauplii. In addition, decapsulated cysts of 15 Artemia populations from different localities were compared with respect to their FAA and protein content. Furthermore, the content and composition of the FAA pool were modulated by hatching the cysts at various salinities, and by enriching the nauplii with algae or a lipid-enrichment emulsion. The FAA content increased threefold from cysts to nauplii, and Instar III metanauplii contained nearly 50% taurine of total FAA. Cysts of A. franciscana were found to contain one-third the amount of FAA compared to the other Artemia species investigated. The content and pool composition of FAA was successfully modulated in 11 of 13 populations, where by the content of FAA was significantly increased when hatched at high salinity. Finally, enrichment elevated the content of FAA and changed the pool composition, thereby showing a dietary effect. Algal enrichment also increased the protein content. Received: 27 September 1999 / Accepted: 17 July 2000  相似文献   

12.
The objective of this study was to describe the seasonal variations in nucleic acid contents and amino acid profiles in the muscle of juvenile Nephrops norvegicus. RNA and protein contents, and RNA:protein and RNA:DNA ratios varied significantly between seasons, being highest in spring and lowest in autumn/winter ( P<0.05). Though DNA content increased significantly from autumn to summer ( P<0.05), protein:DNA ratio did not show significant seasonal variations ( P=0.05). In respect to protein-bound amino acid content (BAA), a significant increase was observed from winter to summer ( P<0.05). Both essential (EAA) and non-essential amino acids (NEAA) increased significantly (27.6% and 27.8%, respectively; P<0.05), mainly due to the considerable increase in arginine and proline (59.1% and 225.2%, respectively; P<0.05). A significant decrease was observed in the free amino acid content (FAA) from winter to summer ( P<0.05); and a higher percentage decrease occurred in free non-essential (FNEAA; 27.9%) in comparison to free essential amino acids (FEAA; 21.8%). The significant increase in RNA and BAA contents from winter to spring may be related to protein synthesis. On the other hand, the lowest values obtained in winter may be due to a reduction in feeding activity; in this period the muscle protein must be progressively hydrolysed, which is evident with the higher FAA content. The liberated amino acids enter the FAA pool and become available for energy production.  相似文献   

13.
Complex particles (CP), zein microbound particles and lipid-spray beads (LSB) were prepared and their performances were compared for delivering glycine and a mixture of free amino acids (FAA; alanine, glycine, leucine, serine and tyrosine) to early fish larvae. Measures of performances of microparticles included inclusion, encapsulation, retention and delivery efficiencies in addition to T50 (time to 50% retention) values. CP were prepared containing LSB and a defined dietary mixture that were bound together with zein. CP had significantly higher retention and delivery efficiencies for FAA compared to those of zein microbound particles. Free LSB had higher retention efficiencies for particulate glycine compared with CP, possibly due to differences in suspension characteristics. Free LSB clumped and floated when suspended in water, negatively affecting their acceptability by fish larvae; therefore, LSB should be incorporated into CP for more effective delivery of amino acids. There was a significant inverse correlation between retention efficiencies and solubilities of FAA encapsulated in CP. After 1 h of aqueous suspension, highest retention (44%) and delivery efficiencies (20.3 mg tyrosine g–1 particle) were achieved with tyrosine. T50 values indicated 50% of the initial tyrosine in CP was still available after 36.7 min of suspension in water. Furthermore, CP can deliver FAA to marine fish larvae based on the results of feeding studies in which CP were digested by 3-day-old clownfish larvae; therefore, this particle type could be a valuable tool in studies of larval fish nutrition.Communicated by R.J. Thompson, St. Johns  相似文献   

14.
Calcification rate in the coral Acropora cervicornis was reduced significantly when exposed for 24 h to 100-ppm kaolin, but was unchanged in corals exposed to 50-ppm kaolin. Calcification rate returned to control levels during a 48-h recovery period. Most free amino acids (FAA) in the FAA pool decreased significantly in corals exposed to 100-ppm kaolin, but were unchanged in corals exposed to 50-ppm kaolin. After a 48-h recovery period, the FAA pool remained considerably below control levels in the 100-ppm exposed corals and dropped below control levels in the 50-ppm exposed corals. Calcification rate dropped less and later during the exposure period in the growing tip than in sections further down the stalk. The reduction in FAA pool size was considerably larger in the growing tip than further down the stalk. Soluble protein concentration remained unchanged during both exposure and recovery. The data are consistent with the interpretation that turbidity not only causes a decrease in photosynthetic rate and the synthesis of small molecules, but also causes a large increase in the utilization of stored organic molecules for such metabolically costly processes as mucus production and sediment removal.  相似文献   

15.
Summary Planthopper (Insecta: Homoptera) feeding stress induces a senesence-like response in the leaves ofSpartina alterniflora characterized by decreased soluble protein, an increased total amino acid pool, and elevated levels of 10 individual amino acids. Increased proline and tryptophan in response to planthopper feeding could not be fully explained by protein degradation. Low degrees of soil salinity stress resulted in an increased total free amino acid pool and elevated levels of 7 amino acids. Anaerobic soil stress resulted in decreased glutamic acid and increased asparagine. Low salinity and anaerobic stress had no effect on soluble protein levels. Glycinebetaine was not affected by the stresses examined in this study.  相似文献   

16.
A study was undertaken to establish the role of free amino acids (FAA) in aerobic energy dissipation in embryos of turbot (Scophthalmus maximus) which contain an oil globule in the egg. Laboratory-reared developing eggs and larvae (15°C, 34 salinity) were measured for oxygen uptake, ammonia excretion, contents of FAA, protein, and ammonium, and volumes of yolksac and oil globule. Newly spawned eggs from different batches contained 55 to 90 nmol egg–1 of FAA. Resorption of FAA occurred in parallel with the consumption of yolk. Resorption of the oil globule, however, occurred predominantly after hatching and mainly after yolk resorption. The combined data suggest that approximately 70% of the FAA are utilized as an energy substrate, while the rest are polymerized into body proteins. FAA become a significant energy substrate in the early egg stage and account for 100% of the aerobic energy dissipation 2 d after Fertilization then decrease to ca. 60% at the time of hatching. Lipids derived from the oil globule seem to be the main fuel after hatching and account for ca. 90% of the energy dissipation at the onset of first-feeding. Thus, the energetics of fish embryos which contain an oil globule seems to be different from those that depend exclusively on the nutritional reserves of the yolk.  相似文献   

17.
Effects of food availability and season on the free amino acid (FAA) and total protein content of the copepod Calanus finmarchicus females were investigated in two mesocosm experiments on the Norwegian west coast in spring and autumn. Starved C. finmarchicus females showed no change in total FAA content, but the FAA pool composition changed drastically. During the first 10 days of starvation the protein content showed a moderate decline (<2 µg ind -1); however, during the following 21 days the total content was drastically reduced, from 63 to 9 µg ind -1. This supports the notion of a sequential catabolism of endogenous nutrients during starvation. In females at high food concentrations, the body protein content increased during spring, but decreased during autumn. The FAA pool composition of females differed between spring and autumn in 14 of the 18 FAA investigated. Reduced body protein content and increased proportion of essential free amino acid were observed during starvation. Similar changes were observed in females sampled at the end of the mesocosm experiments in the autumn. The results suggest that mature C. finmarchicus females are in a negative protein balance during autumn, despite high food concentrations, contributing to a lower fitness than in females maturing during the spring.  相似文献   

18.
Developing eggs and larvae of laboratory-reared gilthead sea bream (Sparus aurata) maintained in filtered seawater (40 ppt) at 18°C, were measured for oxygen uptake, ammonia excretion, contents of free amino acids (FAA), protein, fatty acids (FA) accumulated ammonia, and volumes of yolk-sac and oil globule. Absorption of the yolk coincided with the consumption of FAA and was complete ca. 100 h post-fertilisation. Amino acids from protein were mobilised for energy in the last part of the yolk-sac stage. Absorption of the oil globule occurred primarily after hatching following yolk absorption, and correlated with catabolism of the FA neutral lipids. Overall, FAA appear to be a significant energy substrate during the egg stage (60 to 70%) while FA from neutral lipids derived from the oil globule are the main metabolic fuel after hatching (80 to 90%).  相似文献   

19.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

20.
Larvae of the red abalone (Haliotis rufescens Swainson) are functionally incapable of capturing particulate foods. The aim of this study was to determine whether these larvae could acquire energy from seawater in the form of dissolved organic material. Trochophore and veliger larvae were shown to acquire energy by transporting dissolved organic material from seawater. Both larval stages took up all classes of amino acids tested. The influx of radiolabeled alanine represented the net substrate flux, as determined by direct chemical measurement for both trochophore and veliger larvae. Although veliger larvae have a transport system to take up taurine from seawater, a net efflux was observed for this amino acid. The release of taurine occurred independently of the presence of either taurine or other amino acids in the medium. Transported alanine was used in both anabolic and catabolic pathways. The percent of 14C-alanine in the trichloroacetic acid-insoluble fraction (macromolecules) of veliger larvae ranged from 21 to 56% of the total radioactivity in the larvae. No lipid biosynthesis was detected from 14C-labeled alanine. Veliger larvae catabolized 15 to 19% of the total alanine taken up and released it as 14CO2. The metabolic rate (oxygen consumption) and the rate of amino acid uptake were both determined for the same group of veliger larvae. The percent contribution that the uptake of amino acids, from a total concentration of 1.6 M, made to the metabolic demand of abalone larvae ranged from 39 to 70%. Thus, these lecithotrophic larvae are not energetically independent of their environment, a result which differs from the current view of energy allocation to nonfeeding larvae.Please address all requests for reprints to Dr. Manahan at the University of Southern California  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号