首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
利用GIMMS和MODIS两种遥感数据,分析了1982~2008年东北冻土区植被生长季平均NDVI的时空特征,并探讨不同类型冻土区和不同植被类型归一化差值植被指数(NDVI)对气候变化和CO2体积分数增加的响应.研究表明,不同冻土类型区植被生长季NDVI均值从大到小依次为:连续多年冻土区大片多年冻土区季节性冻土区岛状多年冻土区.东北冻土区不同植被类型生长季平均NDVI值由大到小依次为:森林灌丛沼泽农田草地,其中森林植被生长季平均NDVI值为0.61,草地为0.46.过去27年间,东北冻土区植被生长季平均NDVI年际变化曲线可分为3个变化阶段:①1982~1990年,小幅上升阶段;②1990~2000年,缓慢下降阶段;③2000~2008年,明显上升阶段.1982~2008年期间,连续多年冻土区及大片多年冻土区植被生长季平均NDVI值呈显著上升趋势(p0.05).对于不同植被类型而言,除森林植被NDVI呈显著上升趋势外(p0.05),其它植被类型NDVI值无显著变化趋势.过去27年间,东北冻土区年均气温显著升高,年降水量显著下降,CO2浓度显著升高.研究区全区平均NDVI与年平均气温呈显著正相关(p0.05),气温是影响东北冻土区生长季植被NDVI的主要气候因子.森林和沼泽湿地植被生长季平均NDVI与年平均气温呈显著正相关,与降水量呈显著负相关(p0.05);5种植被类型中仅森林植被受CO2浓度影响显著.年平均气温对不同植被类型的影响由高到低的顺序为:森林沼泽湿地灌丛农田草地;降水的影响为:森林沼泽湿地草地灌丛农田;CO2浓度的影响为:森林沼泽湿地草地农田灌丛.  相似文献   

2.
利用GIMMS和MODIS两种遥感数据,分析了1982~2008年东北冻土区植被生长季平均NDVI的时空特征.并探讨不同类型冻土区和不同植被类型归一化差值植被指数(NDVI)对气候变化和CO2体积分数增加的响应.研究表明.不同冻土类型区植被生长季NDVI均值从大到小依次为:连续多年冻土区>大片多年冻土区>季节性冻土区>岛状多年冻土区.东北冻土区不同植被类型生长季平均NDVI值由大到小依次为:森林>灌丛>沼泽>农田>草地,其中森林植被生长季平均NDVI值为0.61,草地为0.46,过去27年间,东北冻土区植被生长季平均NDVI年际变化曲线可分为3个变化阶段:①1982~1990年,小幅上升阶段;②1990~2000年,缓慢下降阶段;③2000~2008年.明显上升阶段.1982~2008年期间,连续多年冻土区及大片多年冻土区植被生长季平均NDVI值呈显著上升趋势((P<0.05)对于不同植被类型而言,除森林植被NDVI呈显著上升趋势外(P<0.05),其它植被类型NDVI值无显著变化趋势.过去27年间,东北冻土区年均气温显著升高,年降水量显著下降,CO2浓度显著升高.研究区全区平均NDVI与年平均气温呈显著正相关(P<0.05),气温是影响东北冻土区生长季植被NDVI的主要气候因子.森林和沼泽湿地植被生长季平均NDVI与年平均气温呈显著正相关,与降水量呈显著负相关(P<0.05);5种植被类型中仅森林植被受CO2浓度影响显著.年平均气温对不同植被类型的影响由高到低的顺序为:森林>沼泽湿地>灌丛>农田>草地;降水的影响为:森林>沼泽湿地>草地>灌丛>农田;CO2浓度的影响为:森林>沼泽湿地>草地>农田>灌丛.关健词:NDVI;气候变化;CO2浓度增加;东北冻土区  相似文献   

3.
基于2000~2019年MODIS归一化植被指数(NDVI)遥感数据,辅以同期气温、降水和地形数据,通过最大值合成、趋势分析及相关分析法,分析了黄河源区植被的时空变化特征及其对地形和气候变化的响应.结果表明:黄河源区植被NDVI整体处于中高水平,但空间差异显著,呈现由东南向西北递减的空间分布格局;近20a来,植被总体上呈现出变好的趋势.植被对高程和坡度响应明显,随着高程的增加,植被NDVI呈现先增加后减少的趋势,但在3500~4100m区间植被NDVI变化不显著;此外,植被NDVI随着坡度的增大呈现出先增大后减小的变化趋势,且在24~26°坡度带植被NDVI达到最大值.黄河源区植被受气温和降水的共同影响,与降水相比,气温对黄河源区植被变化的影响更为显著.  相似文献   

4.
三北防护林工程区植被覆盖变化与影响因子分析   总被引:8,自引:0,他引:8       下载免费PDF全文
利用1982~2006年间GIMMS AVHRR NDVI植被覆盖数据和气象站点气候数据,分析了三北防护林工程区25a来植被覆盖的时空变化特征及其与气温、降水变化的相关性,并在此基础上通过采用残差分析法探讨了人类活动对研究区植被覆盖变化影响的空间格局.结果表明:研究区25a的年植被变化量增加幅度略大于减少幅度,植被覆盖整体呈缓慢上升趋势,其中Ⅰ区和Ⅳ区NDVI值上升最明显(P<0.001),Ⅱ区则呈微弱下降趋势,而四大建设区植被覆盖度有不同程度提高;研究区植被和气温、降水整体呈正相关关系,17.74%的地区植被与气温呈负相关,而6.84%的地区呈正相关,10.60%的地区植被与降水呈负相关,19.53%的地区则呈正相关,植被与降水正相关面积明显大于植被与气温正相关面积,说明降水是研究区植被生长的关键因子;研究区植被残差年际变化显著正相关面积大于显著负相关面积,人类活动对植被建设作用要强于破坏作用,三北防护林建设工程带来的生态效益正在呈现.  相似文献   

5.
1982-2006年中国东部秋季植被覆盖变化过程的区域差异   总被引:1,自引:1,他引:1  
为进一步认识1982-2006年中国东部秋季植被覆盖变化过程及其区域差异,论文分析了1982-2006年9-10月归一化差值植被指数(NDVI)的多年平均状况和年际变化,并通过聚类分析辨识了NDVI变化过程的主要模态,进而探讨了它们与温度和降水变化的相关关系。结果表明:(1)中国东部秋季森林的覆盖度最高,农田次之,草原最低,并表现出1998年之前趋于增加、此后趋于锐减的变化特征;(2)不同区域植被覆盖变化过程不尽相同,整个研究区植被覆盖变化过程可以分为6种模态,其中①东北地区呈波动上升趋势,②内蒙古高原东北部1982-1998年波动上升、1998年后陡然降低,③华北北部-东北南部呈现跃迁式上升,跃迁年份为1994年,④华北南部表现为先降低后略微增加,趋势转折出现在2000年,⑤江淮地区呈现为1982-1992年波动增加、1992-2006年波动降低,⑥长江及其以南地区表现为陡然下降,突变始于2000年;(3)除了内蒙古高原东北部降水变化能够解释植被覆盖度年际变率的66%以外,华北北部-东北南部的植被覆盖与降水具有正相关关系,秦岭-大巴山-长江中下游及以南地区的植被覆盖与同期温度呈显著正相关,但是降水或温度仅能够解释植被覆盖年际变率的21%,其余地区植被覆盖与气候变化没有显著的相关关系。  相似文献   

6.
澜沧江流域植被NDVI与气候因子的相关性分析   总被引:8,自引:1,他引:8  
基于2000-2010年MODIS NDVI数据和气象台站数据,对澜沧江流域植被NDVI与气候因子间的相关性逐像元进行分析,研究流域植被-气候关系的空间格局特征,并对其可能影响因素进行了探讨。研究结果表明:① 气温和降水对澜沧江流域植被生长均具有明显影响,其中,温度的影响尤为显著;② 流域植被生长对气候响应表现出明显的滞后效应,随着纬度的升高,植被对气候因子响应的滞后时间逐渐缩短;③ 流域不同植被类型受气温和降水的影响程度及其对气温和降水变化的敏感性均表现为草地>耕地>灌木林地>有林地。同一植被类型受气温的影响强于降水,但对降水的变化更为敏感;④ 气候特征(多年平均气温和年降水量)显著影响植被NDVI对气候变化的响应时间。年平均气温的高低与气温对植被的影响力并无必然联系,但年降水量显著影响植被NDVI与降水间的相关程度。  相似文献   

7.
华北地区植被覆盖变化及其影响因子的相对作用分析   总被引:8,自引:0,他引:8  
利用GIMMS NDVI数据和气象数据,采用趋势分析、残差分析和相对作用分析对华北地区1981—2006 年植被覆盖时空变化特征进行了分析,并计算了气候变化和人类活动在植被覆盖变化过程中的相对作用.结果表明,1981—2006 年华北地区植被NDVI呈现显著上升趋势,其增加速率为0.009/10 a,但却存在着明显的空间差异,且植被NDVI退化区域面积大于改善区域面积;华北地区植被覆盖变化与干燥度指数和气温有很好的相关性,说明气候变化是影响植被覆盖变化的重要因素;此外,无论在华北地区植被改善区域还是退化区域,人类活动起到的作用都占据了主导地位.在植被改善区,人类活动的相对作用为68.10%,大于气候变化的相对作用(31.90%),在植被退化区,人类活动的相对作用为71.88%,也远大于气候变化的相对作用(28.12%),且气候变化和人类活动的相对作用大小在不同空间位置上表现不同.  相似文献   

8.
近20年气候变化对西南地区植被净初级生产力的影响   总被引:18,自引:1,他引:18  
论文利用大气-植被相互作用模型(AVIm2)模拟了西南地区植被净初级生产力的空间分布格局和多年变化,分析了1981-2000年西南地区气候变化对森林、灌丛和草地净初级生产力的影响。研究表明,西南地区植被净初级生产力的空间分布与降水量呈显著正相关,与海拔高度呈负相关。从年际变化来看,西南地区总植被净初级生产力近20年略有上升。近一步分析表明,由于近20年西南地区自然植被分布区域降水量变化具有明显差异,从而使得不同类型植被对气候变化有不同响应特征。在森林分布广泛的地区,气温升高速率为0.037℃/年,降水量变化趋势不明显,模拟的森林植被净初级生产力没有明显变化趋势。灌丛和草地集中区域气温升高速率分别为0.040℃/年和0.034℃/年,年降水量有明显增加趋势,植被净初级生产力有上升趋势。  相似文献   

9.
基于2000~2020年MOD13A3 NDVI时间序列、1999~2020年气象数据以及2000年和2020年两期土地利用类型数据,采用Theil-Sen Median趋势分析、 Mann-Kendall显著性检验、多重共线性检验、残差分析和相对作用分析等方法,分析了西南地区植被NDVI时空变化特征及气候变化和人类活动对植被NDVI变化的驱动机制.结果表明,研究时段内西南地区整体及各地貌单元植被NDVI均呈上升趋势,其中,广西丘陵和云贵高原植被NDVI上升趋势最为显著,青藏高原植被NDVI上升趋势最为微弱.气候变化和人类活动影响下西南地区植被NDVI上升斜率分别为0.001 0 a-1和0.000 6 a-1.气候变化和人类活动的共同驱动是引起西南地区植被改善的主要原因.西南地区植被改善主要受区域气候条件的控制,植被退化主要受人类活动的影响.总体上,植被NDVI与最低气温、降水、最高气温、可能蒸散率和相对湿度呈正相关,与平均气温、气压、日照时数、温暖指数和湿度指数呈负相关.最低气温、日照时数和降水是影响西南地区植被NDVI变化的主要气象因子...  相似文献   

10.
长江上游植被覆盖的时空分异季节变化及其驱动因子研究   总被引:3,自引:0,他引:3  
以GIMMS/NDVl为基础,结合气候与人类活动数据,研究了1982~2003年间长江上游植被覆盖季节变化的空间分布.结果表明,近22年来,长江上游春季、夏季植被覆盖呈增加趋势,以春季最显著;秋季、冬季植被覆盖呈降低趋势,以秋季降低最显著.春季、夏季降雨与气温的同步增加,致使植被覆盖增加;秋季降雨减少,以及气温的增加导致植被覆盖降低;另外,作物播种面积的增加是春季、夏季植被覆盖增加,秋季、冬季植被覆盖减少的重要原因.春季→夏季→秋季→冬季NDVI增加的区域在窄问上大致呈现低纬度向高纬度转移的趋势.春季、夏季所有植被类型的NDVI均有增加趋势;而秋季所有植被类型的NDVI均降低;冬季植被除针叶林的NDVI略有增长外,其余植被类型的NDVI均降低.  相似文献   

11.
研究植被变化及其对气候变化和人类活动的响应机制,对区域生态保护和植被恢复具有重要现实意义.利用MODIS NDVI数据、基于站点的气象数据和土地利用数据,结合Theil-Sen Median趋势分析、Mann-Kendall显著性分析、残差分析、偏相关分析和复相关分析等方法,基于不同地貌单元,分析2000~2020年中国西南地区植被覆盖时空演变特征及其对气候和土地利用变化的响应特征.结果表明,2000~2020年西南地区植被NDVI整体呈波动上升趋势,上升斜率在空间上呈东南高和西北低的分异格局.气候变化和人类活动对西南地区植被NDVI上升均以促进作用为主,且对广西丘陵植被生长的促进作用强于其他地貌单元.2000~2020年间西南地区植被NDVI与气温和降水呈正相关,与相对湿度和日照时数呈负相关,且温度是影响西南地区植被NDVI变化的气候主导因子.城市扩张在一定程度上减少了区域植被覆盖,但得益于适宜的气候条件以及林业生态工程的实施,西南地区整体植被覆盖以上升为主.研究结果可为西南地区生态保护及经济可持续发展提供科学依据.  相似文献   

12.
广东省土地覆盖变化对植被净初级生产力的影响分析   总被引:3,自引:0,他引:3  
理解土地利用/覆盖变化对植被净初级生产力(Net Primary Productivity,NPP)的影响对于全球碳循环和粮食安全具有重要意义。论文采用优化的CASA(Carnegie-Ames-Stanford Approach)模型估算广东省2000、2005和2010年NPP,分析NPP的空间格局和土地覆盖的时空动态,研究土地覆盖变化对NPP的影响。结果表明:1)广东省NPP空间分布不均,形成一系列高值区和低值区;总体上是粤中区最高,珠三角区最低。2)2000—2010年广东省土地覆盖变化程度增强,城市用地和耕地变化最大,主要集中在珠三角区和粤中区。3)在气候变化条件下,以城市扩张为主导的广东省土地覆盖类型变化整体上造成NPP的损失,损失量主要来自林地和耕地向低生产力土地覆盖类型的转换,尤其是被城市用地占用;不同生态区NPP损失差异显著,珠三角区和粤中区NPP损失较为严重;2005—2010年珠三角区NPP损失量有所降低,其他生态区均有所增加,体现了城市扩张对NPP影响的复杂性。  相似文献   

13.
基于2000~2020年MODIS NDVI遥感数据,辅以气象数据和土地利用数据,通过小波分析、Sen+Mann-Kendall趋势分析、Hurst指数、偏相关分析及残差分析法,以不同地形地貌为单元,对不同周期阶段下东北地区植被时空演变特征及其对气候变化和人类活动的响应机制进行深入解析.结果表明:时间上,21a间东北地区植被NDVI呈速率为0.0308/10a(P<0.001)的上升趋势,以16a第一主周期下10a左右的周期变化最为稳定;空间上,东北地区植被NDVI整体处于较高水平,但空间分异明显,呈“西南低东北高”的格局.各周期阶段均为NDVI改善面积大于退化面积且改善范围不断扩增.NDVI未来变化趋势主旋律为持续改善,占总面积的63.56%;响应机制上,东北地区植被NDVI受气候变化与人类活动共同影响.2000~2020年NDVI与气温、降水和相对湿度呈正相关,与日照时数呈负相关,其中降水对NDVI的影响作用最强,且随周期演替以降水为主导气候因子的面积显著递增.各周期阶段人类活动对NDVI变化均以正向促进为主,林业工程实施是植被状况改善的关键,而建设用地扩张是植被减少的主要原因.  相似文献   

14.
近50 a来,在气候变化和生态恢复与治理工程实施的背景下,黄土高原的侵蚀产沙特征发生了明显的变化。以黄土高原典型中尺度流域清水河流域(面积436 km2)为研究对象,利用1959、1986、2007年的土地利用解译结果和1960—2005年该流域实测输沙和降水资料,采用非参数Mann-Kendall趋势分析法和滑动t检验法研究了该流域年输沙量、降雨量的变化趋势和突变点,并与通用土壤流失方程相结合分析了该流域土地利用和降雨变化对输沙量变化的贡献率。结果表明:该流域年输沙量47 a间有显著的下降趋势,突变点位于1980年;降雨量没有明显的趋势性变化,极端降雨指数下降。降雨因素对输沙量减少的贡献率为9.89%,土地利用的贡献率为90.11%,土地利用变化中工程措施淤地坝的贡献率为5.56%,植被变化的贡献率为84.55%。该流域47 a间乔木林地面积增加了944.27%,灌木林地增加了19.33%,表明清水河流域林地面积增加是导致输沙量减少的主要原因。  相似文献   

15.
受塔里木河流域综合治理工程实施和近期气候变化的影响,流域植被覆被时空分布产生一定的变化,厘清植被覆被与流域气候变化及人类活动的关系可以为塔里木河流域生态维护与治理提供科学参考依据。为此,论文以NDVI为指示因子,运用趋势分析、R/S分析、偏相关分析以及残差分析等方法,分析了2000-2013年综合治理工程期间NDVI的时空变化特征,并探讨及区分降水、气温气候因子以及人类活动对植被覆被变化的影响范围和程度,结果表明:1)2000-2013年,塔里木河流域植被生长季NDVI总体呈现增加趋势,增加速率为0.8%/10 a,平原区增速明显高于山区;且开都河-孔雀河流域山区、塔里木河干流的上、中游部分地区呈现比较明显的退化趋势。与此同时,塔里木河干流下游生长季NDVI持续改善。2)山区植被覆被变化主要受气候变化的影响,其中温度是高山区植被生长的主要限制因子,温度的增加促进植被的生长;中低山区以及出山口平原地区植被生长季NDVI变化是降水和温度共同作用的结果,且主要受降水的影响。降水与植被生长季NDVI变化呈正相关,温度与植被生长季NDVI变化呈负相关。3)平原绿洲区植被生长季NDVI增加主要是绿洲灌区面积不断增加以及塔里木河流域生态治理工程对植被恢复的结果,人类活动是该区域植被生长的主要驱动力。4)塔里木河干流生态闸工程在恢复下游植被的同时,也在一定程度上影响了上、中游地区的用水,尤其是导致中游植被出现退化趋势,退化速率约为0.1%/10 a。相关部门应进一步加强水资源的合理配置,充分发挥生态闸工程的水资源调度调控作用。  相似文献   

16.
归一化植被指数(Normalized difference vegetation index,NDVI)是衡量区域植被生产力变化的一个重要指标,而土地利用/覆盖变化(Land use/cover change,LUCC)进程深刻影响了陆地生态系统空间分布格局及其生产力变化。因此本文结合趋势分析和转移矩阵法,从中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)NDVI年际变化角度分析鄂尔多斯北部典型农牧交错区(十大孔兑地区)2000-2015年植被生产力的变化趋势与LUCC的关系。结果表明:(1)在农牧交错区植被生产力总体呈增加趋势,其中显著增加和不显著增加区域面积占总面积的89.41%,分别为22.01%和67.4%;其后依次为不显著减少区域、无变化区域和显著减少区域,面积比例分别为4.59%、3.32%和2.68%。(2)在不显著增加和显著增加区,土地转换面积分别为235146.08 hm2和82761.76 hm2,草地转为农田、林地、水体、建设用地和未利用地尤其是草地转为农田导致对应区域植被生产力增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号