共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
根据2000年各省市生物质的消耗资料,结合排放因子,计算了中国大陆生物质燃烧所排放的SO2、NOx、NH3、CH4、EC、OC、VOC、CO、CO2的总量及各省市的排放清单,并进一步细化到县、区级行政区.研究表明,生物质燃烧排放的污染物在地区间的分布极不均衡,排放量较大的包括华东、中南地区的各省市;各种生物质燃烧对各污染物的排放量的贡献差异很大,其中秸秆和薪柴是最主要来源;单位面积生物质燃烧排放污染物的量较高的地区由东北至中南围绕中国的主要农业产地呈带状分布. 相似文献
3.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主... 相似文献
4.
5.
基于2010年初农村能源消费情况的问卷调查,获得全国分省秸秆露天焚烧比例,在此基础上确定秸秆露天焚烧的活动水平,采用排放因子法建立中国秸秆露天焚烧的污染物排放清单. 结果表明,中国农村秸秆露天焚烧平均比例为20.8%. 2009年全国28个省区(不包括西藏自治区、天津市、上海市、港澳台地区,下同)秸秆露天焚烧的PM2.5、BC、OC、SO2、NOx、CO、NMVOC、NH3、CH4和CO2排放量分别138.1×104、6.4×104、41.1×104、8.7×104、41.8×104、594.6×104、94.4×104、8.0×104、44.2×104和14 355.4×104 t. 稻谷、玉米和小麦是露天焚烧的三大作物秸秆,其对污染物排放的贡献合计约为87%. 秸秆露天焚烧排放量最高的前3位分别为湖南省、河南省和安徽省, 秸秆露天焚烧比例分别43.1%、20.8%和39.7%. 污染排放的高值区主要集中在华北和华中地区. 95%置信区间下的不确定性分析结果显示,PM2.5、BC、OC、SO2、NOx、CO和NMVOC排放的不确定性范围分别为-60%~83%、-78%~147%、-73%~135%、-48%~75%、-49%~78%、-91%~155%和-67%~94%. 2015年初对六省(湖南省、广东省、江苏省、河南省、黑龙江省和辽宁省)农村能源消费调查的结果显示,2014年江苏省、湖南省和广东省的秸秆露天焚烧比例较2009年均有下降,而辽宁省、黑龙江省和河南省则相对上升. 研究显示,秸秆禁烧政策已取得初步成效,建议国家有关部门进一步加大秸秆禁烧政策的推行力度,完善相关政策措施. 相似文献
6.
长江三角洲地区秸秆露天焚烧大气污染物排放清单及其在空气质量模式中的应用 总被引:6,自引:3,他引:6
基于长江三角洲江苏、安徽、浙江和上海地区2008年粮食产量的统计年鉴,结合作物谷草比、排放因子等估算了上述地区2008年秸秆焚烧排放污染物清单,重点完善了各县级市污染物排放.结果表明2008年江苏、安徽、浙江和上海地区SO2、NOx、CO、CO2、PM2.5、BC、OC、NH3、CH4、NMVOC的排放总量分别为14.28、86.01、1 744.56、36 893.03、517.54、11.74、114.63、19.93、89.37和208.57 kt.江苏中部和北部、安徽北部地区秸秆露天焚烧污染物排放较多,而江苏南部和浙江地区污染物排放量较少.将建立的秸秆露天焚烧排放污染物清单应用于WRF-CMAQ空气质量模式,结果表明,考虑秸秆焚烧排放源后,对PM10、CO等大气污染物的模拟能力大幅提高,模拟浓度比使用原始排放源分别提高42%和28%,模拟浓度与实测浓度的相关系数分别提高0.25和0.17,模拟值较使用原始排放源更加贴近实测值. 相似文献
7.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧. 相似文献
8.
四川省秸秆露天焚烧污染物排放清单及时空分布特征 总被引:6,自引:4,他引:6
根据收集的活动水平数据,采用排放因子法建立了四川省2012年秸秆露天焚烧污染物排放清单,并分析了污染排放的时空分布特征.结果表明,2012年四川省秸秆露天焚烧共排放SO2、NOx、NH3、CH4、NMVOC、CO、PM2.5、EC以及OC分别为1 210、12 185、2 827、20 659、40 463、292 671、39 277、1 984以及10 215 t;水稻、小麦、玉米、油菜是四大主要的焚烧作物秸秆,对污染物的总贡献率约为88%~94%;秸秆露天焚烧受农作收获的影响,全年的排放主要集中在7~8月,而5月是上半年的一个排放小高峰;秸秆焚烧排放的高值地区主要分布在成都平原、川北地区以及川南地区,川西地区排放分布相对较少;本清单的不确定性主要来自排放因子及秸秆焚烧量. 相似文献
9.
基于广东省粮食产量的统计年鉴,建立了广东省2008~2016年秸秆燃烧污染物排放清单和2016年广东省秸秆燃烧VOCs物种清单,并对VOCs臭氧生成潜势进行评估.结果表明,2013~2016年广东省秸秆燃烧各大气污染物排放量较2008~2012年有所降低.这主要是由于禁止秸秆露天燃烧政策的出台及农村生活水平的提高降低了秸秆燃烧比例.2016年各类大气污染物SO_2、NO_x、NH_3、CH_4、EC、OC、NMVOC、CO和PM_(2.5)的排放量依次为2 443.7、16 187.9、6 943.8、29 174.4、3 625.5、14 830.7、65 612.6、591 613.9和49 463.0 t.稻谷秸秆燃烧是最主要的秸秆燃烧污染物来源,占据了污染物总排放量的约68.55%.污染物贡献最大的5个市分别为湛江、茂名、梅州、肇庆和韶关,约占总排放量的58.63%.2016年广东省秸秆燃烧VOCs物种排放清单中,排放量贡献前10的物种分别为:乙烯、乙醛、甲醛、苯、乙炔、丙烯、乙烷、甲苯、正丙烷和丙醛,占总VOCs量的67.91%.在VOCs物种清单的基础上估算了其臭氧生成潜势(OFP),OFP贡献前10 VOCs物种分别为:乙烯、甲醛、乙醛、丙烯、1-丁烯、丙醛、甲苯、丙烯醛、异戊二烯和丁烯醛,占总OFP量的80.83%. 相似文献
10.
生物质露天燃烧排放烟气颗粒物对大气环境、生态系统和人类健康有重要影响. 该研究基于MODIS - MCD64A1数据提取2001—2016年浙江省森林、灌丛、草地火灾面积和作物秸秆火点数据,结合植被类型、生物质密度和燃烧效率,运用排放因子法,估算16年间浙江区域露天生物质燃烧排放污染物总量. 结果表明,2001—2016年浙江区域露天生物质燃烧总量为58.78 mt,其中乔木、灌木、草本、水稻、小麦、玉米、豆类和油菜燃烧总量分别为202.18 kt、10.43 kt、300.10 t、46.66 mt、1.94 mt、2.45 mt、3.45 mt和4.06 mt. 森林和秸秆火次数分别为1783次和23257次,森林火灾多集中在浙江南部区域,秸秆火多集中在浙江北部区域. 森林和草地火灾次数主要集中在3月和10月,作物秸秆火点主要集中在5、7和8月份,占全年75%以上. 各污染物CO2、CO、NOx、VOCs、PM2.5、TC、OC和EC排放总量分别为667.20、26.40、1.13、4.92、5.12、2.85、2.59和0.23 mt. 该研究揭示了浙江地区生物质露天燃烧排放污染物的时空变化,为深入揭示生物质燃烧对区域环境影响提供数据支持. 相似文献
11.
12.
采用排放因子法建立了2016年兰州市生物质燃烧源挥发性有机物(VOCs)排放清单,并分析了污染物的时空排放特征,利用排放清单对生物质燃烧源的臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势进行了估算,研究其排放对大气环境的影响.结果表明:2016年兰州市生物质燃烧源排放VOCs总量为6626.2t,排放高值区在榆中东南及东北部、永登中部和七里河南部,经济水平落后、秸秆产量大的地区污染物排放量更大.污染物排放集中在采暖季(11~3月)及农作物收割期(7~8月);兰州市生物质燃烧源的OFP总量为13880.3t,煨炕为OFP贡献最大的子源,占比46.1%,含氧挥发性有机物(OVOCs)为OFP贡献最大的关键组分,占比51.4%;OFP贡献排名前10的物种有乙酸、丙烯、2-丁酮、甲苯、甲醛、乙醛、间/对-二甲苯、1-丁烯、丙酸和异戊二烯.煨炕是SOA生成潜势贡献最大的子源,占比46.5%,芳香烃为SOA生成潜势贡献最大的关键组分,占比62.2%,SOA生成潜势贡献排名前10的物种有苯酚、甲苯、α-蒎烯、间/对-二甲苯、苯、邻二甲苯、茚、1,2,4-三甲基苯、乙苯和1,2,3-三甲基苯;以降低区域O3和SOA浓度为目标时,应优先管控煨炕和秸秆露天燃烧(玉米)两类子源. 相似文献
13.
OnthedeterminationofnitrousoxideemissionfactorduringbiomassburningCaoMeiqiu;ZhuangYahui(ResearchCenterforEco-EnvironmentalSci... 相似文献
14.
生物质露天焚烧及家庭燃用的多环芳烃排放特征研究 总被引:4,自引:0,他引:4
农村地区生物质燃烧排放是大气多环芳烃(PAHs)的重要来源之一.本研究利用建立的烟尘罩稀释通道采样系统,对我国典型的生物质燃烧方式—水稻、玉米、花生、大豆秸秆的家庭炉灶燃烧,并对水稻、玉米、花生秸秆以及荔枝树、大叶榕、小叶榕等落叶的露天焚烧进行实验室模拟,实测了秸秆野外焚烧、落叶野外焚烧、秸秆炉灶燃烧等3种典型生物质燃烧类型排放的气相及颗粒相PAHs的排放因子.结果表明,本研究生物质露天焚烧PAHs排放因子高于大部分已有实验结果,秸秆炉灶燃烧PAHs排放因子亦高于大部分排放清单采用值.3类燃料燃烧排放PAHs的谱分布相近,均以中低环PAHs为主,中高环(4~6环)PAHs比例为22.2%~28.8%.采用某单一数值作为某类源PAHs特征比的取值,并将其运用于大气PAHs的来源解析可能会造成偏差. 相似文献
15.
秸秆露天焚烧典型大气污染物排放因子 总被引:2,自引:0,他引:2
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致. 相似文献
16.
《环境科学学报(英文版)》2023,35(3):277-289
Black carbon (BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions () and open biomass burning () transported to Xishuangbanna in 2017. Haze months, between haze and clean months, and clean months in Xishuangbanna were defined according to daily PM2.5 concentrations of >75, 35–75, and <35 µg/m3, respectively. Results showed that the transport efficiency density (TED) of BC transported to Xishuangbanna was controlled by the prevailing winds in different seasons. The yearly contributions to the effective emission intensity of and transported to Xishuangbanna were 52% and 48%, respectively. However, when haze occurred in Xishuangbanna, the average and contributions were 23% and 77%, respectively. This suggests that open biomass burning (BB) becomes the dominant source in haze months. Myanmar, India, and Laos were the dominant source regions of BC transported to Xishuangbanna during haze months, accounting for 59%, 18%, and 13% of the total, respectively. Furthermore, India was identified as the most important source regions of transported to Xishuangbanna in haze months, accounting for 14%. The two countries making the greatest contributions to transported to Xishuangbanna were Myanmar and Laos in haze months, accounting for 55% and 13%, respectively. BC emissions from Xishuangbanna had minimal effects on the results of the present study. It is suggested that open BB in Myanmar and Laos, and anthropogenic emissions in India were responsible for poor air quality in Xishuangbanna. 相似文献
17.
中国民用煤燃烧排放细颗粒物中重金属的清单 总被引:3,自引:2,他引:3
基于稀释通道采样系统和室内模拟燃烧实测,并搜集全国各省区煤中11种重金属的含量,推算出两种常用民用煤(蜂窝煤和块煤)燃烧排放的细颗粒物(PM_(2.5))中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb等11种重金属排放因子.计算了2012年全国(除港、澳、台地区)民用燃煤排放PM_(2.5)中重金属的排放量,并建立了全国30 km×30 km的网格化清单.结果表明,蜂窝煤燃烧排放PM2.5中,Pb、Zn、As和Cu的排放因子较高,分别为27.1、16.8、0.99和0.97 mg·kg-1,分别是块煤的56、6、10和2倍.2012年我国民用燃煤燃烧排放PM_(2.5)中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb的排放总量分别为0.5、30.1、59.5、1.1、29.3、20.0、188.9、64.9、1.6、3.4和176.7 t.湖南、河北、内蒙古、河南和山东等省区民用煤燃烧排放的各种重金属总排放量较高,分别占全国排放总量的12.4%、12.3%、10.4%、9.9%和9.3%.不同重金属的单位面积排放强度与人均排放量显示,北京、河南、山东、湖南、江西、贵州以及内蒙古等地区存在较高的重金属健康风险.空间分布信息显示,Zn和Pb年排放量较大的地区分布较广,主要分布在内蒙古、河北、北京、天津、山东、河南、甘肃、湖南以及江西等省(市)区.本研究所得细粒子中重金属清单可为区域空气质量模拟、人体健康风险评估等提供基础数据. 相似文献