首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We examined the isotopic signatures (δ13C, δ15N) of adult body feathers from southern giant petrels Macronectes giganteus collected at two breeding colonies in Antarctica (Potter Peninsula and Cape Geddes) and one in southern Patagonia (Observatorio Island), as well as in whole blood collected from adults of both sexes at each Antarctic colonies and from chicks at Potter Peninsula. As body feather moult is a continuous process in giant petrels, feathers provide an integrated annual signal of an adult’s diets and foraging habitats. In contrast, the stable isotope values of adult and chick blood are reflective of their diets during the breeding season. We found that sex-specific dietary segregation in adults breeding in Antarctica was notable during the breeding season (blood samples) but absent when examined across the entire year (feather samples). In addition, blood stable isotope values differed between chicks and adults, indicating that adults provision their offspring with a relatively higher amount of penguin and seal prey that what they consume themselves. This finding confirms previous work that suggests that chicks are preferentially fed with prey of presumably higher nutritional value such as carrion. Finally, based on isotopic differences between major oceanographic zones in the Southern Ocean, our data indicate population-specific differences in foraging distribution, with Antarctic populations move seasonally between Antarctic and subantarctic zones, while Patagonian populations likely forage in subtropical waters and in continental shelf habitats year-round.  相似文献   

2.
During chick-rearing, albatrosses can alternate between long foraging trips that provide the main source of food for the adults and short foraging trips that they use to feed their young. This flexibility in foraging behaviour can lead to differences in diet composition between adults and chicks and implies that they may be vulnerable in different ways to food shortages. The trophic ecology of the Grey-headed albatross Thalassarche chrysostoma was investigated at the sub-Antarctic Prince Edward Islands during the chick-rearing period in April 2006 using a combination of approaches. Diets of adults and chicks were assessed using stable isotope ratios and fatty acid (FA) profiles of blood and/or stomach oils, in addition to stomach contents analysis. Fish from the family Macrouridae and cephalopods (particularly the onychoteuthid Kondakovia longimana) were the primary prey, whereas crustaceans (krill Euphausia superba) represented a smaller proportion of the stomach contents. Stomach oil FA profiles contained more monounsaturated FA than the profiles of plasma, which were richer in saturated FA and arachidonic acid (20:4n-6). There was also a distinct separation of adults from chicks, with higher levels of monounsaturates in chick plasma, and higher saturated FA levels (particularly 16:0) in the adult plasma. Stable carbon isotope ratios of whole blood were similar in adults and chicks, whereas stable nitrogen isotope ratios showed significant enrichment by >1‰ in chicks. The combined FA, stable isotopes and stomach contents analyses suggest clear differences in diet quality between adults and chicks, with chicks feeding at a higher trophic position through feeding more on highly nutritious fish and adults keeping much of the less nutritious zooplankton for themselves.  相似文献   

3.
The degree of individual or gender variation when exploiting food resources is an important aspect in the study of foraging ecology within a population. Previous information on non-breeding skimmers obtained through conventional methodologies suggested sex-related differences in prey species. In this study, stable isotope techniques were used to investigate the intraspecific segregation in diet and foraging habits of the Black Skimmer (Rynchops niger intercedens) at Mar Chiquita Coastal Lagoon (37°40′S, 57°22′W), Argentina. These results were compared with contemporary data on the trophic composition obtained by conventional methodologies. Blood samples were taken from birds captured with mist-nets during their non-breeding season. The isotopic signatures of skimmers showed a diet mainly composed of marine prey with some degree of estuarine fish intake. When comparing diet between sexes, males showed enrichment in 15N compared to females, while no differences were observed in 13C. The use of mixing models revealed differences in the relative composition of prey in the diet of male and female skimmers. This study highlights stable isotope analysis as a valuable tool to test inter-individual differences and sexual segregation in trophic ecology of Black Skimmers as compared to conventional methodologies. The results show a trophic segregation in the Black Skimmer during the non-breeding season that can be explained by differences in prey species and larger prey sizes of male skimmers. Our findings have significant implications for conservation since any environmental change occurring at wintering areas might have profound effects on several avian life-history traits, and could be different for males and females due to trophic segregation.  相似文献   

4.
Individual specialisation is increasingly recognised to be an ecological and evolutionary process having important consequences for population dynamics of vertebrates. The South American fur seal (SAFS) and the South American sea lion (SASL) are two otariid species with similar ecology that coexist in sympatry in the Uruguayan coast. These two species have contrasting trends and widely different population sizes. The underlying reasons for these population trends, unique in their geographical ranges, remain unknown. We studied the foraging ecology of these otariid species over 2 years at the individual- and population levels using the isotopic ratios (δ13C–δ15N) in whiskers of both sexes. We compared the isotope ratios between species and sexes and used several metrics to characterise the degree of overlap and distinctiveness in the use of isotopic niche space at the individual- and population levels. Interspecific trophic niche overlap was minimal, thus ruling out interspecific competition as the cause for the contrasting population trends of both species. At the intraspecific level, both species had sexual segregation in their foraging areas, but each species had a large overlap in the isotopic niches between sexes. While SAFS had a wider niche and generalist individuals, SASL had the narrower niche with a higher degree of individual specialisation. Behavioural constraints during the breeding season, intraspecific competition and a major dependence on resources of the Uruguayan coastal shelf may explain why SASL had a higher trophic individual specialisation and a larger vulnerability in a heavily exploited habitat by fisheries and, by consequence, a locally declining population trend.  相似文献   

5.
The widespread omnivory of consumers and the trophic complexity of marine ecosystems make it difficult to infer the feeding ecology of species. The use of stable isotopic analysis plays a crucial role in elucidating trophic interactions. Here we analysed δ15N, δ13C and δ34S in chick feathers, and we used a Bayesian triple-isotope mixing model to reconstruct the diet of a generalist predator, the yellow-legged gull (Larus michahellis) that breeds in the coastal upwelling area off northwest mainland Spain. The mixing model indicated that although chicks from all colonies were fed with a high percentage of fish, there are geographical differences in their diets. While chicks from northern colonies consume higher percentages of earthworms, refuse constitutes a more important source in the diet of chicks from western colonies. The three-isotope mixing model revealed a heterogeneity in foraging habitats that would not have been apparent if only two stable isotopes had been analysed. Moreover, our work highlights the potential of adding δ34S for distinguishing not only between terrestrial and marine prey, but also between different marine species such as fish, crabs and mussels.  相似文献   

6.
Diet quality is a key determinant of population dynamics. If a higher trophic level, more fish-based diet is of higher quality for marine predators, then individuals with a higher trophic level diet should have a greater body mass than those feeding at a lower trophic level. We examined this hypothesis using stable isotope analysis to infer dietary trophic level and foraging habitat over three years in eastern rockhopper penguins Eudyptes chrysocome filholi on sub-Antarctic Campbell Island, New Zealand. Rockhopper penguins are ‘Vulnerable’ to extinction because of widespread and dramatic population declines, perhaps related to nutritional stress caused by a climate-induced shift to a lower trophic level, lower quality diet. We related the stable nitrogen (δ15N) and carbon (δ13C) isotope values of blood from 70 chicks, 55 adult females, and 55 adult males to their body masses in the 2010, 2011, and 2012 breeding seasons and examined year, stage, age, and sex differences. Opposite to predictions, heavier males consumed a lower trophic level diet during incubation in 2011, and average chick mass was heavier in 2011 when chicks were fed a more zooplankton-based, pelagic/offshore diet than in 2012. Contrary to the suggested importance of a fish-based diet, our results support the alternative hypothesis that rockhopper penguin populations are likely to be most successful when abundant zooplankton prey are available. We caution that historic shifts to lower trophic level prey should not be assumed to reflect nutritional stress and a cause of population declines.  相似文献   

7.
Stable isotopes of growing feathers and blood both represent assimilated diet, and both tissues are used to study the diet and foraging distribution of marine and terrestrial birds. Although most studies have assumed that both tissues represent a difference of one trophic level to diet, the enrichment factors of blood and feathers may differ, especially where endogenous reserves are used as precursors during feather synthesis. In this study, we compare carbon and nitrogen stable isotopes of blood and simultaneously growing feathers of five species of Procellariiformes, representing five genera, different geographical regions and different life stages (chicks and adults). In all species, feathers were enriched in 15N and 13C compared with blood. Isotopic values of carbon and nitrogen were correlated in different tissues growing simultaneously for most species analyzed, suggesting that mathematical corrections could be used to compare different tissues. Our results imply that more care needs to be taken when comparing stable isotope signatures across studies assuming different tissues are equivalent indicators of trophic ecology.  相似文献   

8.
Leatherback turtles, Dermochelys coriacea, are highly migratory, spending most of their lives submerged or offshore where their feeding habits are difficult to observe. In order to elucidate the foraging ecology of leatherbacks off Massachusetts, USA, stable isotope analyses were performed on leatherback tissues and prey collected from 2005 to 2009. Stable isotope ratios of nitrogen and carbon were determined in whole blood, red blood cells, blood plasma, muscle, liver, and skin from adult male, female, and subadult leatherbacks. Isotopic values were analyzed by body size (curved carapace length) and grouped by sex, and groups were tested for dietary differences. Gelatinous zooplankton samples were collected from leatherback foraging grounds using surface dip nets and stratified net tows, and prey contribution to leatherback diet was estimated using a two-isotope Bayesian mixing model. Skin and whole blood δ13C values and red blood cell δ15N values were correlated with body size, while δ13C values of red blood cells, whole blood, and blood plasma differed by sex. Mixing model results suggest that leatherbacks foraging off Massachusetts primarily consume the scyphozoan jellyfishes, Cyanea capillata and Chrysaora quinquecirrha, and ctenophores, while a smaller proportion of their diet comes from holoplanktonic salps and sea butterflies (Cymbuliidae). Our results are consistent with historical observations of leatherback turtles feeding on scyphozoan prey in this region and offer new insight into size- and sex-related differences in leatherback diet.  相似文献   

9.
To test the hypothesis that stable isotope ratios from marine organisms vary, the δ15N and δ13C values from fish and squid collected in Alaskan waters were measured across years (1997, 2000, and 2005), seasons, geographic locations, and different size/age classes, and between muscle tissue and whole animals. Temporal, geographic, and ontogenetic differences in stable isotope ratios ranged from 0.5–2.5‰ (δ15N) to 0.5–2.0‰ (δ13C). Twenty-one comparisons of stable isotope values between whole organisms and muscle tissue revealed only four small differences each for δ15N and δ13C, making costly and space prohibitive collection of whole animals unnecessary. The data from this study indicate that significant variations of stable isotope values from animals in marine systems necessitates collection of prey and predator tissues from the same time and place for best interpretation of stable isotope analysis in foraging ecology studies.  相似文献   

10.
Pelagic seabirds obtain food from oceans where the availability of their prey changes rapidly both seasonally and spatially. Here, we investigated changes in the trophic habits of the critically endangered Balearic shearwater (Puffinus mauretanicus) through the breeding season and tested for dietary differences between sexes and age classes. We analysed δ15N and δ13C values in blood of adults during the pre-incubation, incubation and chick-rearing periods and of their chicks. Using a two-isotope mixing model, we estimated dietary contributions based on isotope values from potential prey species which included small pelagic species available naturally and demersal fish species available only from trawling discards. Balearic shearwaters showed clear isotopic and dietary variation through the breeding season. During pre-incubation, breeding adults appeared to exploit demersal fish, whereas during the incubation and chick-rearing period, they fed mainly on pelagic anchovies (Engraulis encrasicolus) and pilchards (Sardina pilchardus). Similarly, chicks were fed mainly with anchovies, a resource with a high energetic value. This variation in the dietary habits of adult shearwaters during the breeding season was probably related to both natural and fishery-induced seasonal changes in the availability of potential prey species within their main feeding grounds. However, changes in the nutritional requirements of the shearwaters could also play an important role. Indeed, diet differed between sexes during pre-incubation: females fed less on trawling discards and more on small pelagic fish than males. This sexual segregation in diet could be the consequence of higher nutritional requirements of females during this period. Our study reveals the differential importance of both trawling discards and small pelagic fish species for a pelagic seabird depending on the breeding period and illustrates the importance of considering the entire breeding season when making inferences about the importance of specific prey in seabird dietary studies.  相似文献   

11.
We assessed the foraging habits of California sea lions, Zalophus californianus, from Isla Santa Margarita, BCS, Mexico, by analyzing δ13C and δ15N values of dentin collagen. Since dentin is deposited annually in growth layer groups (GLGs), it can be subsampled to construct ontogenetic isotopic profiles at the individual level. We drilled 20 canine teeth and obtained 141 samples for isotopic analysis that were assigned to age-specific categories from GLG-based estimated ages. Pups’ GLGs had the highest mean δ15N values and the lowest mean δ13C values, a pattern likely driven by the consumption of milk. Juveniles had δ15N values between those of pups and adult females, which may reflect continued nursing into the second year or preferential consumption of coastal benthic versus pelagic prey. Significant differences were observed between the sexes of adults; adult females had lower mean δ13C and δ15N values than adult males. Higher isotope values in adult males relative to females may reflect a higher trophic position, but differences in foraging grounds cannot be excluded as a potential explanation because tracking data are not available at this time. Evidence of intra-specific foraging diversification may be related to a strategy to reduce competition within and among age and sex categories.  相似文献   

12.
In diving seabirds, sexual dimorphism in size often results in sex-related differences of foraging patterns. Previous research on Magellanic penguins, conducted during the breeding season, failed to reveal consistent differences between the sexes on foraging behavior, despite sexual dimorphism. In this paper, we tested the hypothesis that male and female Magellanic penguins differ in diet and foraging patterns during the non-breeding period when the constraints imposed by chick rearing activities vanish. We used stable isotope ratios of carbon and nitrogen in feather and bone to characterize the diet and foraging patterns of male and female penguins in the South Atlantic at the beginning of the 2009–2010 and 2010–2011 post-breeding seasons (feathers) and over several consecutive breeding and migratory seasons (bone). The mean δ13C and δ15N values of feathers showed no differences between the sexes in any of the three regions considered or in the diet composition between the sexes from identical breeding regions; however, Bayesian ellipses showed a higher isotopic niche width in males at the beginning of the post-breeding season. Stable isotope ratios in bone revealed the enrichment of males with δ13C compared with females across the three regions considered. Furthermore, the Bayesian ellipses were larger for males and encompassed those of females in two of the three regions analyzed. These results suggest a differential use of winter resources between the sexes, with males typically showing a larger diversity of foraging/migratory strategies. The results also show that dietary differences between male and female Magellanic penguins may occur once the constraints imposed by chick rearing activities cease at the beginning of the post-breeding season.  相似文献   

13.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

14.
This study tested for fluctuations on short-term consistency (within about 1 month) in the isotopic niche of a pelagic seabird species. Short-term consistency in the isotopic niche was assessed using a wide-ranging apex predator, the Cory’s shearwaters Calonectris diomedea, along a 3-year study (2010–2012), during both the pre-laying and chick-rearing periods, with markedly inter- and intra-annual differences in the foraging spatial distribution at sea and isotopic niche width. We used individual movement data and stable isotope data, analysed using recent metrics based in a Bayesian framework, of 69 adults breeding on a small neritic island in the North Atlantic (39°24′N, 009°30′W). As expected, our results confirm that isotopic niche expansion could arise via increased variation in spatial distribution at sea among individuals. Results suggest fluctuations on short-term consistency in the isotopic niche of Cory’s shearwaters related to their different foraging patterns among periods and, ultimately, to presumably temporal changes in the availability and predictability of food resources. Short-term consistency in the isotopic niche was higher and persistent during periods when the population showed an intermediate isotopic niche width and absent when isotopic niche was either smaller or larger during the study period. These results suggest that consistency in the isotopic niche is an important characteristic of this population during the breeding period that may fluctuate depending on resources availability and should be important to understand the dynamics of foraging ecology of pelagic seabirds in general.  相似文献   

15.
Skin and muscle from 43 bottlenose dolphins (38 juveniles/adults, 5 calves) stranded in NW Spain were analysed to determine whether stable isotope ratios (δ13C and δ15N) could be used to assess dietary variation, habitat segregation and population substructure. Results were compared with published stomach contents data. Stable isotope ratios from 17 known prey species were also determined. Isotope ratios of the main prey (blue whiting, hake) varied significantly in relation to fish body size. Dolphin calves showed significant heavy isotope enrichments compared to adult females. Excluding calves, δ15N decreased with increasing dolphin body size, probably related to an ontogenetic shift in diet towards species at lower trophic levels, e.g. on blue whiting as suggested by stomach content results. Bottlenose dolphins were divided into two putative populations (North, South) based on previous genetic studies, and values of δ13C and δ15N differed significantly between these two groups, confirming the existence of population structuring.  相似文献   

16.
Arctic cod (Boreogadus saida) is a schooling fish providing a critical link between lower and upper trophic levels in the Arctic. This study examined foraging of Arctic cod collected from Allen Bay, Cornwallis Island, Canada (~75 N 95 W), during summer 2010 using temporal indicators of diet including stomach content, and carbon (δ13C) and nitrogen (δ15N) stable isotopes of liver and muscle. Foraging at the time of capture reflected sympagic and epi-benthic habitats indicated by the prevalence of cyclopoid and harpacticoid copepods in stomachs, whereas stable isotope data, which provide an estimate of feeding over a longer period, indicated pelagic prey as important. Prey selection of juveniles differed from adults based on stable isotopes, while large adults showed the most separation based on stomach contents, suggesting size-related diet shifts. Compared to studies near Resolute in the 1970s, 1980s, and 1990s, growth and pre-spawning gonadal conditions of Arctic cod have not changed.  相似文献   

17.
In pelagic seabirds, who often explore distant food resources, information is usually scarce on the level of trophic segregation between parents and their offspring. To investigate this issue, we used GPS tracking, stable isotopes and dietary information of Cory’s shearwaters Calonectris diomedea breeding in contrasting environments. Foraging trips at Selvagem Grande (an oceanic island) mainly targeted the distant African coast, while at Berlenga island (located on the continental shelf), shearwaters foraged mainly over nearby shelf waters. The degree of isotopic segregation between adults and chicks, based on δ13C, differed markedly between the two sites, indicating that adult birds at Selvagem fed their chicks with a mixture of shelf and offshore pelagic prey but assimilated more prey captured on coastal shelf waters. Isotopic differences between age classes at Berlenga were much smaller and may have resulted from limited dietary segregation or from age-related metabolic differences. The diet of shearwaters was also very different between the two colonies, with offshore pelagic prey only being detected at Selvagem Grande. Our findings suggest that spatial foraging constraints influence resource partitioning between pelagic seabirds and their offspring and can lead to a parent–offspring dietary segregation.  相似文献   

18.
Stable isotope ratios and fatty acid signature analyses were employed to examine the fine-scale population structure of a year-round resident population of 600–800 bottlenose dolphins (Tursiops truncatus) in the Indian River Lagoon (IRL), Florida. The IRL, a 250-km-long estuary running along the central east coast of Florida (28.0°N, 80.6°W), is comprised of the northern and southern IRL, Mosquito Lagoon (ML), Banana River (BR), and St. Lucie Estuary. Samples of skin and blubber were collected from dead stranded (n = 61, 1994–2004) and live dolphins (n = 153, 2002–2007, 2010, 2011) from throughout the IRL and surrounding environs. Using stable isotopes (SI), dolphins could be assigned to a ML subpopulation, a St. Lucie Estuary subpopulation, and an IRL subpopulation. Fatty acid signature analysis (FASA) allowed for finer resolution, detecting ML and BR subpopulations, a separation of northern and southern IRL subpopulations, and a St. Lucie Estuary subpopulation. Differences between sexes were detectable within subpopulations using FASA, but not using SI. This may indicate that males and females are foraging in similar locations at a similar trophic level (detected using SI), but are varying in the types or proportions of specific prey (indicated by FASA). The combination of these complementary analyses results in a powerful tool for assessing fine-scale population substructure.  相似文献   

19.
Within the tropical and subtropical oceans, tuna forage opportunistically on a wide variety of prey. However, little is known about the trophic ecology of the smallest size classes which play an important role in stock assessments and fisheries management. The foraging behavior of yellowfin tuna, Thunnus albacares (23.5–154.0 cm FL), collected from nearshore Fish Aggregating Devices (FADs) around Oahu was studied using stable isotope and stomach contents analyses. Emphasis was placed on small juveniles. Yellowfin tuna changed their diets significantly between 45 and 50 cm forklength (ca. 1.5 kg). Smallest size classes fed on planktonic organisms inhabiting the shallow mixed layer, primarily larval stomatopod and decapod crustaceans, whereas larger tuna fed on teleosts and adult Oplophorus gracilirostris, a vertically migrating mesopelagic species of shrimp. When interpreting the variation in prey δ 15N values, we considered both their relative trophic position and δ 15N values of the nitrogen at the base of the food web. Based on the distinct diet shift of the yellowfin tuna, demonstrated by both isotope and stomach content analyses, we propose a critical mass threshold was reached at about 45 cm FL that enabled sufficient endothermic capability to allow tuna to access prey dwelling in deeper, colder water. These ontogenetic changes in foraging range and commensurate shift in diet of small tunas would affect their vulnerability to fishing pressure.  相似文献   

20.
To determine whether stable isotope measurements of body feathers can be used to investigate the isotopic niche of moulting (inter-nesting) adult seabirds, we examined the stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of body feathers of breeding wandering albatrosses (Diomedea exulans) from Crozet Islands, southern Indian Ocean. First we showed that the isotopic composition of body feathers was not significantly different from that of wing feathers, being thus a safe alternative to flight feathers whose collection impairs the birds’ flying ability. Second, we looked at the variances in δ13C and δ15N values resulting from the isotopic measurement of a single feather, four different feathers, and a pool of four feathers per bird, to delineate the best isotopic analytical procedure. A two-step protocol is proposed that allows investigating both the intra- and inter-individual components of the niche width of the species. In a first step, isotopic measurements on a single feather per bird are used to define isotopic specialist from isotopic generalist populations. In a second step and for generalist populations only, measurements on additional (three) feathers per bird are used to delineate type A from type B isotopic generalists (Bearhop et al. in J Anim Ecol 73:1007–1012, 2004). Third, from a biological point of view, our data showed different moulting isotopic niches for adult males and females, and also within female wandering albatrosses. Since the isotopic composition of body feathers in this species reflects that of wing feathers, our results suggest that, after validation, body feathers have the potential for investigating the foraging ecology of other Procellariiforms and seabirds during the poorly known inter-nesting period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号