首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

2.
Organism-induced accumulation of iron, zinc and arsenic in wetland soils   总被引:2,自引:0,他引:2  
Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems.  相似文献   

3.
Enzymatic activity (peroxidase, glutamate dehydrogenase, glutamine synthetase), foliage buffering capacity, soluble protein and nitrogen content were measured in current and previous year needles from young spruce (Picea abies) and fir (Abies alba). The trees were exposed to low levels of SO(2) and/or O(3) and simulated acidic precipitation (pH 4.0) in open-top chambers from 1983 through 1988. Needle samples were taken during March 1988 at the end of the five-year fumigation period. Exposure to SO(2) substantially increased sulphur content in both needle age classes of spruce and fir, and concomitantly reduced the foliage buffering capacity index (BCI), whereas the combined fumigation with SO(2) and O(3) had no effect on BCI. Peroxidase activity was markedly higher in year-old needles compared to current-year needles. However, trees from the SO(2) and SO(2) + O(3) treatments exhibited statistically significant stimulated peroxidase activities. Similarly, changes in the activities of the nitrogen-metabolizing enzymes indicated an altered cellular function of the trees after the long-term pollution stress. Levels of activity of both glutamate dehydrogenase and glutamine synthetase were increased by exposure to SO(2), especially in spruce. Although glutamate dehydrogenase in spruce was affected by all treatments, such changes in activity were found in fir only with the SO(2) treatment. The highest activity of glutamine synthetase, however, occurred in the older needles of trees exposed to SO(2) + O(3). Total nitrogen concentration was either unaffected by the pollutant treatments or decreased in spruce compared to the controls. No statistically significant changes due to the fumigation were found in soluble protein concentrations. Results indicated that chronic exposure to air pollutants lead to alterations in metabolic processes in conifer needles, detectable either by changes in typical stress indicating values or by increases in ammonium assimilation capacity.  相似文献   

4.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   

5.
Previous experiments with conifers fumigated with O(3), produced by air-operated electric discharge ozonators, have provided evidence that O(3) increases the leaching of NO(3)(-), NH(4)(+), K(+), Ca(2+), Mg(2+) and some other cations from needles, when the trees are treated with acid mist. This evidence has provided the foundation of the ozone-acid mist hypothesis of spruce decline. We report experiments with Norway spruce saplings fumigated with purified and unpurified O(3). The results show that the accumulation of NO(3)(-) in the needles arises from the rapid deposition of N(2)O(5) and HNO(3) formed from N(2) in the ozonator. An increase in removal of NH(4)(+), Na(+), Ca(2+), Mg(2+), Zn(2+) and Mn(2+) from the needles during soaking in H(2)SO(4), pH3, was also observed, which was related to the increase in NO(3)(-) but was independent of O(3) concentration. It is concluded that results of previous experiments cited in support of the ozone-acid mist hypothesis arose from effects which were at least partly caused by N(2)O(5) produced as a contaminant, and were incorrectly attributed to ozone. Other effects, such as growth stimulations, visible symptons, enhanced frost sensitivity, and infestation by pests or pathogens, which have been attributed to O(3) generated by electric discharge in air, should be interpreted with caution. Future experiments with ozone must eliminate this problem by either using O(2)-driven ozonators, or by purifying the output from air-driven ozonators using cold and/or water traps.  相似文献   

6.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

7.
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO(2) (arithmetic mean 相似文献   

8.
The effects of air pollutants on soil were studied in Scots pine (Pinus sylvestris L.) forests near the boundary of Russia and Estonia. The study area is characterized by large amounts of acidic and basic pollutants, mainly sulphur dioxide (SO(2)) and calcium (Ca). Several variables were measured in different horizons of the podzolic soil polluted by emissions from local sources in areas of several thousands of square kilometers. Alkalinization dominates the processes in the soil, since sulphur is absorbed only in small quantities and Ca is much better absorbed. Ca content in humus horizon may rise even to 100 000 mg kg(-1) and the pH of originally very acidic soil may rise to 8.3. Total aluminum (Al) content was high in the heavily polluted plots, since emissions contain much Al. On the other hand, the exchangeable Al was very low in these alkaline sites. A larger quantity of exchangeable Al occurred farther from the pollutant sources, even though total Al in these plots was low. These plots had acidic soils in which Al is in exchangeable form. Due to the neutralizing effect of acidic and basic pollutants, forest damage in the study area was not as serious as might be supposed. Complicated pollutant situations must be taken into consideration when pollution-caused environmental protection measures are planned. It is not reasonable to reduce only SO(2) emissions, but necessary to lower the basic emissions at the same time.  相似文献   

9.
The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.  相似文献   

10.
European beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.) were exposed to low concentrations of ozone (O(3)) and sulfur dioxide (SO(2)), alone and combined, and simulated acid rain (pH 4.0) in sheltered open-top chambers in Hohenheim (Southwest Germany) for almost five years. The concentrations of O(3) and SO(2) used were related to annual ambient average found in southern West Germany. Two control chambers were ventilated with charcoal filtered air and rainfall was simulated at pH 4.0 and 5.0. Because of large dense plant growth in the chambers it was only possible to measure uncompleted growth of shoots in the upper canopy. Therefore, growth analysis was restricted to this area. The treatment with acidic precipitation decreased the annual shoot growth of beech and reduced leaf surface area of those trees. Exposure to SO(2), O(3) alone and in combination resulted in further reduction of shoot length and leaf surface area. Fumigation with SO(2) and O(3) + SO(2) caused insignificant decreases of shoot length, total dry weight and needle surface area of spruce. The lateral leader shoot growth of spruce exposed to O(3) was significantly reduced only in the last year of the experiment. Growth rates of the spruce exposed to charcoal filtered air and non-acidic precipitation were reduced more than those of beech and fir. Growth variables determined for fir reflected different rates of incremental change. Exposure to O(3) resulted in the largest dry matter production of all fir groups but those exposed to charcoal filtered air and non-acidic precipitation responded with the best lateral leader shoot growth, lowest specific leaf area (SLA) and leaf area ratio (LAR) respectively indicating best metabolic efficiency. At the conclusion of this study a classification of sensitivity was developed for the tree species.  相似文献   

11.
Four-year-old spruce clones (Picea abies (L.) Karst.) cultivated in sand and provided with a complete nutrient solution, or a solution deficient in magnesium and calcium, were exposed to the pollutant mixtures SO(2)/NO(2), O(3)/NO(2), and O(3)/SO(2)/NO(2), at realistic concentrations for 32 weeks. Fumigation caused a slight increase of total N contents in current year needles, whereas in one-year-old needles N concentrations did not change. The response of nitrate reductase activity to pollutant stress depended on needle age and nutrient supply, respectively. In one-year-old needles fumigation resulted in a significant inhibition of enzyme activity, particularly in Mg and Ca deficient trees. The combination of all three components proved to be most effective in causing a decrease by 60% compared to the control. In contrast, nitrate reductase activity was stimulated in current year needles, especially by O(3)/NO(2) and O(3)/SO(2)/NO(2). Changes in the activity of nitrate and nitrite reductases are considered as a factor contributing to the high phytotoxic potential of pollutant combinations with NO(2).  相似文献   

12.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

13.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   

14.
采用TESSIER连续提取法研究了不同种类、不同加入量的无机钠盐对土壤中不同形态Cu含量的影响。结果表明,对于可交换态Cu,3种无机钠盐的加入均使其含量减少,其中NaCl的影响最大,4、8g/kg的NaCl分别使其减少了28.13%(质量分数,下同)和50.59%;对于碳酸盐结合态Cu,3种无机钠盐的加入均使其含量增加,其中Na2CO3(8g/kg)对其影响最大;对于铁锰氧化态Cu,Na2SO4和Na2CO3的加入使其含量先升高后降低,NaCl则使其含量降低;有机结合态Cu受Na2SO4和Na2CO3的影响较大,在它们的影响下含量均增加;残渣态Cu在3种无机钠盐的影响下变化幅度均很大,其中4、8g/kg的Na2SO4分别使其含量减少了47.47%和62.21%。  相似文献   

15.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

16.
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.  相似文献   

17.
Bayraktar H  Turalioglu FS 《Chemosphere》2005,59(11):1537-1546
Seasonal variations in the chemical characteristics of wet and bulk deposition samples collected in Erzurum were investigated for the period March 2002-January 2003. Major cations (Ca2+, K+, Mg2+) and major anions (SO4(2-),NO3-) were determined in bulk and wet deposition samples; pH was also measured in wet deposition. The average pH of the wet deposition at Erzurum was 6.6 due to extensive neutralization of the acidity. A strong relationship between pH and SO4(2-) concentrations was observed in all seasons; however, only a weak relationship was found between pH and NO3-. On a seasonal basis, the correlation between Ca2+ and SO4(2-) concentrations was stronger in winter than in summer. Seasonal variations of ions were examined in both wet and bulk deposition samples. Although maximum concentrations of anions generally occurred during winter and spring, cation concentrations peaked in summer for both wet and bulk deposition. Results indicated that Ca2+ was the dominant cation and SO4(2-) the dominant anion in all deposition samples at Erzurum. Even though correlations among the crustal ions (calcium, magnesium and potassium) were high, the relationship between anthropogenic ions (sulfate and nitrate) was less clear in bulk deposition.  相似文献   

18.
19.
This paper reports the results of total sulphur content, photosynthetic pigments, ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) analysed in current-year needles of Norway spruce (Picea abies (L.) Karst.) in the area influenced by sulphur emissions from the Sostanj Thermal Power Plant (STPP), Slovenia, in the period 1991-2004. Ten differently polluted sampling sites in the emission area of STPP were selected. After desulphurization of emission gases from STPP total sulphur content in needles decreased and vitality parameters of needles increased. Moreover, a strong correlation between the average annual emissions of SO(2) from STPP and average annual sulphur content (increase) or average annual chlorophyll content (decrease) in current-year needles was found. The results showed that spruce needles may be an useful bioindicator for detecting changes in the emission rates of SO(2).  相似文献   

20.
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H+ and Al3+ and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg?1soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H+ and Al3+. Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号