首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 μg/m2/year in Cadillac Brook watershed and 10.2 μg/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 μg/m2/year in Cadillac Brook watershed and 0.10 μg/m2/year in Hadlock Brook watershed.  相似文献   

2.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献   

3.
The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (相似文献   

4.
Paleoecological reconstructions of forest stand histories for two upland watersheds at Acadia National Park in Maine were completed to support related watershed chemistry studies. The project hypothesis was that forest type and fire history influence long-term cycling and storage of atmospheric mercury and nitrogen within watersheds. The reconstructions document differences in major vegetation composition and disturbance between the burned and unburned watersheds during the past several centuries. Pollen and charcoal stratigraphies from organic sediment accumulations in forested wet depressions indicate that the present experimental design of contrasting disturbance and forest histories has persisted during recent centuries. The unburned watershed has been dominated by spruce (Picea rubens) and fir (Abies balsamea) for 500 years or more and has not recently burned or been substantially cleared. The burned watershed is dominated by a heterogeneous forest of patchy hardwood, mixed wood, and softwood stands. A large portion of this watershed burned severely in 1947 and probably more than once in the 1800s, and has supported heterogeneous successional forests for 200 years or longer. Overall, these results support the underlying premise that the experimental design of this watershed research can be used to infer landscape controls on biogeochemical processes.  相似文献   

5.
We reviewed literature reporting both total and methylmercury from biota from Acadia National Park, Maine, USA. Our review of existing data indicates that 1) mercury contamination is widespread throughout the Park’s various aquatic ecosystems; 2) mercury pollution likely represents a moderate to high risk to biota inhabiting the Park; and 3) biota at all trophic levels possess elevated concentrations of both total and methylmercury. Watershed fire history and the resulting post-fire forest succession patterns are an important landscape attribute governing mercury cycling at Acadia National Park. Therefore, park service personnel should consider these factors when planning and implementing Hg biomonitoring efforts. Additional baseline funding from the National Park Service for Hg research and biomonitoring will likely be required in order to further evaluate the spatial and temporal patterns of mercury contamination in the park’s biota. An erratum to this article can be found at  相似文献   

6.
The Bear Brook Watershed in Maine (BBWM), USA, and the Fernow Experimental Forest in West Virginia, USA, represent unique, long-term, paired, whole watershed, experimental manipulations focusing on the effects of nitrogen (N) and sulfur (S) deposition on temperate forests. Both watersheds began whole-ecosystem additions of N and S as (NH4)2SO4 in the fall of 1989, and both are entering their third decade of chronic enrichment of the treated watersheds, while the reference watersheds offer unique opportunities to evaluate forest watershed responses to recovery. Differences between BBWM and Fernow in the history of atmospheric deposition, soil properties, and forest composition all contribute to different response trajectories in stream chemical exports over time. The four watersheds represent a spectrum of N enrichment and retention, ranging from ≈98% N retention in the reference watershed in Maine, to ≈20% N retention in the treated watershed in West Virginia. Despite these differences, there is evidence that mechanisms of response in base cation leaching and other processes are similar among all four watersheds. In both cases, the history to date of two decades of research and monitoring has provided new insights into ecosystem response not evident in more traditional short-term research.  相似文献   

7.
A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate–nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate–nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate–N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export.  相似文献   

8.
Dynamic Hydrologic Simulation of the Bear Brook Watershed in Maine (BBWM)   总被引:2,自引:0,他引:2  
Bear Brook Watershed in Maine (BBWM) consists of a pair of research watersheds, East Bear Brook (EBB) and West Bear Brook (WBB). Years of research and observations have shown both watersheds have high similarity in geographic and hydrologic characteristics; a simple comparison of hydrographs from these two watersheds further substantiates this similarity. The Object Watershed Link Simulation (OWLS) model was developed and used to simulate the hydrological processes within the BBWM. The OWLS model is a 3-dimensional, vector-based, visualized, physically-based, distributed watershed hydrologic model. Simulation results not only provide a close examination of hydrologic processes within a watershed, but also dynamically visualize the processes of flow separations and Variable Source Areas (VSA). Results from flow separations suggest that surface flow from riparian area is the predominate component for the flood rising limb and that macropore flow from riparian area dominates during the falling limb. Soil matrix flow has little effect flood period but is a persistent contributor to base flow. Results from VSA visualization demonstrate 3-D dynamic changes in surface flow distribution and suggest that downstream riparian areas are the major contributing area for peak flow. As water chemistry is highly relevant to the flow paths within a watershed, simulations have provided valuable information about source of stream flow and the water migration dynamics to support the study of watershed chemistry in the BBWM. More specific linkages between the chemistry behavior and the dynamic hydrologic processes should become the next simulation effort in the watershed study. There are many questions that are critical to watershed chemistry studies like: which flow component (surface flow, macropore flow, soil matrix flow) predominates during peak flows? How do the flow components distribute during a flood event? How do flow contributions differ between these two watersheds? Which portion of the watershed contributes the most to the peak flows? These questions remain unknown from previous observations and only can be addressed with a physically-based distributed model.  相似文献   

9.
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear Brook Watershed in Maine (BBWM) is a long-term paired whole-watershed experimental acidification study demonstrating evidence of each of these acidification characteristics in a northeastern U.S. forested ecosystem. In 2003, BBWM soils were studied using the Hedley fractionation procedure to better understand mechanisms of response in soil Al, Fe, and P chemistry. Soil P fractionation showed that recalcitrant P was the dominant fraction in these watersheds (49%), followed by Al and Fe associated P (24%), indicating that a majority of the soil P was biologically unavailable. Acidification induced mobilization of Al and Fe in these soils holds the potential for significant P mobilization. Forest type appears to exert important influences on metal and P dynamics. Soils supporting softwoods showed evidence of lower Al and Fe in the treated watershed, accompanied by lower soil P. Hardwood soils had higher P concentrations in surface soils as a result of increased biocycling in response to N additions in treatments. Accelerated P uptake and return in litterfall overshadowed acidification induced P mobilization and depletion mechanisms in hardwoods.  相似文献   

10.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

11.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   

12.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

13.
Acadia National Park was one of the 14 sites included in the Park Research and Intensive Monitoring of Ecosystems network (PRIMENet). For eight years the EPA monitored ultraviolet (UV) radiation at this site, with the National Park Service (NPS) sponsoring a total climate and air monitoring station. Under the auspices of PRIMENet, research projects were initiated that investigated the effects of UV on amphibians, determined watershed mass balances, and developed a model of deposition along an elevational gradient. The monitoring data and research results have been used by park management to protect vegetation and water resources from ozone and deposition. These data are now being used to develop a “vital signs” monitoring program under the NPS’ Inventory and Monitoring Program. These data sets have been used in regional, national and international programs to protect human health and resources from air pollution. Public outreach has been accomplished through web site resources and via the Schoodic Education and Research Center.  相似文献   

14.
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.  相似文献   

15.
We monitored nest boxes during 1997–1999 at Acadia National Park, Mt. Desert Island, ME and at an old-field site in Orono, ME to determine mercury (Hg) uptake in tree swallow (Tachycineta bicolor) eggs, tissues, and food boluses. Also, in 1998–1999 we monitored nest boxes at Grove Pond and Plow Shop Pond at a U.S. Environmental Protection Agency Superfund site in Ayer, MA. We recorded breeding success at all locations. On average among locations, total mercury (THg) biomagnified 2 to 4-fold from food to eggs and 9 to 18-fold from food to feathers. These are minimum values because the proportion of transferable methyl mercury (MeHg) of the THg in insects varies (i.e., 35%–95% of THg) in food boluses. THg was highest in food boluses at Aunt Betty Pond at Acadia, whereas THg in eggs was highest at the Superfund site. A few eggs from nests at each of these locations exceeded the threshold (i.e., 800–1,000 ng/g, wet wt.) of embryotoxicity established for Hg. Hatching success was 88.9% to 100% among locations, but five eggs failed to hatch from 4 of the 11 clutches in which an egg exceeded this threshold. MeHg in feathers was highest in tree swallows at Aunt Betty Pond and the concentration of THg in bodies was related to the concentration in feathers. Transfer of an average of 80%–92% of the Hg in bodies to feathers may have enhanced nestling survival. Residues of Hg in tissues of tree swallows in the Northeast seem higher than those of the Midwest.  相似文献   

16.
There has been extensive analysis of Clean Air Act Amendment (CAAA) regulation impacts to changes in atmospheric nitrogen deposition; however, few studies have focused on watershed nitrogen transfer particularly regarding long-term predictions. In this study, we investigated impacts of CAAA NOx emissions on the fate and transport of nitrogen for two watersheds in the Neuse River Basin. We applied the Soil and Water Assessment Tool (SWAT) using simulated deposition rates from the Community Multiscale Air Quality (CMAQ) model. Two scenarios were investigated: one that considered CAAA emission controls in CMAQ simulation (with) and a second that did not (without). By 2020, results showed a 70 % drop in nitrogen discharge for the Little River watershed and a 50 % drop for the Nahunta watershed from 1990 levels under the with-CAAA scenario. Denitrification and plant nitrogen uptake played important roles in nitrogen discharge from each watershed. Nitrogen watershed response time to a change in atmospheric nitrogen deposition was 4 years for Nahunta and 2 years for Little River. We attribute these differences in nitrogen response time to contrasts in agricultural land use and diversity of crop types. Soybean, hay, and corn land covers had comparatively longer response times to changes in atmospheric deposition. The studied watersheds demonstrate relatively large nitrogen retention: ≥80 % of all delivered nitrogen.  相似文献   

17.
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p?< 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p?< 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p?< 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.  相似文献   

18.
Buried mineral soil-bags and natural solutions were studied as indicators of forest ecosystem response to elevated N and S inputs at the Bear Brook Watershed in Maine (BBWM). The BBWM is the site of a paired watershed manipulation experiment in a northern New England forested ecosystem. The study includes two small (10 ha each) catchments dominated by northern hardwood forests with red spruce in the upper elevations. Treatments consist of (NH4)2SO4 applied to the West Bear watershed six times per year, increasing N and S deposition 3× and 2× above ambient values, respectively. Buried mineral soil-bag changes over time reflected both the native soil environment and the treatments. Most of the treatment effects on mineral soils were evident as higher inorganic S found in the treated watershed soils. Adsorbed SO4 in the buried mineral soil-bags increased by approximately 40% under softwood stands and 50% under hardwood stands over the study period. Hardwood soil solutions responded with significant increases in NO3 and SO4 concentrations that resulted in accelerated cation leaching, primarily Ca and Al. Few differences that could be attributed to treatments were evident in soil solutions under softwoods. No treatment effects were evident in throughfall and stemflow chemistry.  相似文献   

19.
The Bear Brook Watershed in Maine (BBWM) is a long-term, paired watershed experiment that addresses the effects of acid and nitrogen (N) deposition on whole watersheds. To examine stream response at BBWM, we synthesized data on organic matter dynamics, including leaf breakdown rates, organic matter inputs and standing stocks, macroinvertebrate secondary production, and nutrient uptake in treated and reference streams at the BBWM. While N concentrations in stream water and leaves have increased, the input, standing stocks, and breakdown rates of leaves, as well as macroinvertebrate production, were not responsive to acid and N deposition. Both chronic and acute increases of N availability have saturated uptake of nitrate in the streams. Recent experimental increases in phosphorus (P) availability enhanced stream capacity to take up nitrate and altered the character of N saturation. These results show how the interactive effects of multiple factors, including environmental flow regime, acidification, and P availability, may constrain stream response to chronic N deposition.  相似文献   

20.
Despite decades of research about episodic acidification in many regions of the world, the understanding of what controls the transient changes in stream water chemistry occurring during rain and snow melt events is still limited. Here, we use 20 years of hydrological and stream chemical data from the paired watershed study at Bear Brook Watershed in Maine (BBWM), USA to improve the understanding of the effects of acid deposition on the causes, drivers, and evolution of episodic acidification. The long-term experimental study at BBWM includes 18 years of chemical treatment of the West Bear Brook (WB) watershed with (NH4)2SO4. East Bear Brook (EB) serves as reference. The treatment started in 1989 following a 2-year pretreatment period. We analyzed 212 hydrological episodes using an episode model that can separate and quantify individual drivers of the transient change in acid-neutralizing capacity (ANC) during hydrological events. The results suggest that 18 years of N and S addition have not affected the natural drivers of episodic acidification of base-cation dilution, marine sea salt episodes, or organic acidity during rain and snow melt events. The contribution of SO $_{4}^{2-}$ to the ANC decline in WB has been increasing linearly since the beginning of watershed treatment, while the role of NO $_{3}^{-}$ has remained relatively constant after an initial increase. This is contradictory to many previous shorter-term studies and illustrates the need for a more mechanistic understanding of the causes and drivers of episodic acidification during rain- and snow melt-driven hydrological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号