首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以某一化学物质(ANPyO)为例,探讨了化学物质热危险性分析方法和步骤:建议首先从化学结构上对物质进行初步分析,然后根据化学结构进行理论计算预测,最后在前面研究的基础上,选择和确定采用合适的,比如:DSC/TG、ARC等小药量实验方法,研究化学物质的热危险性.对于ANPyO,通过分子结构可知其为多硝基多氨基芳烃,是具有潜在的燃烧、爆炸危险的活性化学物质.理论计算预测其属于高危险性物质.对其进行DSC/TG、ARC实验,得到绝热分解反应的热力学和动力学参数,自加速分解温度( TSADT)为199℃,热分解开始温度为310.0℃,最大反应速度出现在系统温度771.5℃时,自热分解开始到最大反应速度的时间为23.5min.文中研究可为该化学物质生产、使用和储运安全提供参考.  相似文献   

2.
简单放热化学反应体系热安全性研究判据   总被引:1,自引:1,他引:0  
许多危险化学物质在发生热化学反应的同时通常会放出热量,如果能量不能有效释放就可能引起火灾和爆炸事故,考虑到化学物质对热的响应方式非常复杂,从分析绝热条件下化学物质的热化学反应动力学入手,利用化学物质的物理化学特性参数计算化学反应体系在绝热条件下发生热化学反应的温升速率dT/dt,进而获得有关的动力学因子A,E等。结果表明,尽管在近似绝热条件下化学反应体系的热化学反应与其本身的特性和反应容器有关,但温升速率dT/dt只与物质的物理化学特性参数有关。含氯酸钾的几种简单放热反应体系的ARC实验结果进一步验证了这一结论。因此,同一种化学物质与不同物质构成的多元混合反应体系在相同近似绝热条件下的热化学反应特征参数,可以作为判据用来比较并评价体系的相对安全性,该判据对表征热化学反应的难易程度以及物质的相对安全性起到一定的指导意义。  相似文献   

3.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

4.
采用绝热加速量热仪(ARC)对分析纯过硫酸铵、含10%氯化钠杂质的过硫酸铵以及含10%二氧化硅杂质的过硫酸铵进行热分析实验,得到了实验过程中温度、温升速率和压力等数据,计算了3组样品的反应动力学参数,引入热惰性因子对实验数据进行修正,得到了3组样品在严格绝热条件下的热危险性参数,分析了3组样品的反应过程和热危险性。通过Semenov理论计算了3组样品的自加速分解温度(SADT)。结果表明,过硫酸铵加入氯化钠或二氧化硅杂质后,热危险性增大,自加速分解温度降低,更容易发生反应且反应更剧烈。  相似文献   

5.
The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have been caused by its thermal instability in storage or manufacturing process. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of DCP. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of DCP at room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of DCP.  相似文献   

6.
为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数据,并用ASTM E 698法得到活化能数据,同时用C80、ARC和DSC的试验数据验证分解动力学数据的可靠性。最后利用无模式法的分解动力学数据进行BIPB绝热条件下和非绝热的2m3球形容器中的失控反应模拟,得到类似工艺条件下BIPB的安全控制温度。  相似文献   

7.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   

8.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   

9.
10.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   

11.
N, N-Dinitroso pentamethylene tetramine, also known as H foaming agent, is a self-reactive chemical substance commonly used in the rubber industry. Decomposition, explosion and combustion may be caused by the presence of fire or high temperature. As a high-risk chemical that is strictly regulated in China, H foaming agent has ever triggered multiple accidents. During the study of the decomposition thermal process of H foaming agent, it was found that the presence of moisture content at different levels had a significant effect on its thermal stability. The thermal characteristics of H foaming agent under different moisture contents was studied through the test means such as adiabatic calorimetry and high-pressure differential scanning calorimetry. Through isothermal calorimetry experiment, it was found that the decomposition of H foaming agent had obvious auto-catalytic characteristics. In the moisture content within the range of 0–40%, with the increase of moisture content, the initial exothermic temperature Tonset of the mixture system of H foaming agent and water decreased, while the time from initial heat release to rapid temperature rise of the reaction system (induction period) was gradually prolonged, and the temperature increment of the reaction system was increased gradually. As the proportion of moisture content in the system increased, the adiabatic temperature rise ΔTad of the mixture system of H foaming agent and water gradually decreased, meanwhile the time to maximum rate under adiabatic condition (TMRad) gradually decreased. The research results have guiding significance for finding the reasonable moisture content of H foaming agent in the drying process and determining the upper temperature limit during storage and transportation.  相似文献   

12.
无机酸对硝酸铵热稳定性影响的研究   总被引:5,自引:1,他引:5  
为了研究硫酸、盐酸两种无机酸对含能材料硝酸铵热稳定性的影响,使用绝热加速量热仪ARC和微量量热仪C80,对纯硝酸铵及硝酸铵和硫酸、盐酸的混合物进行了热分析实验并研究各种样品在恒温以及升温条件下的吸、放热特性。根据化学反应动力学和热力学理论,确定了硝酸铵及其与无机酸的混合物发生放热分解反应的反应动力学参数和热力学参数。基于Semenov热爆炸模型,计算并比较了各样品标准包装的自加速分解反应温度。  相似文献   

13.
Thermal analysis by differential scanning calorimetry and thermogravimetric/differential thermal analysis mass spectrometry, adiabatic calorimetry, a gram-scale heating test, and infrared spectroscopy were performed to evaluate the thermal hazards of diphenylmethane diisocyanate (MDI) and prove the occurrence of a runaway reaction. The self-polymerization of MDI was found to occur at about 340 °C under rapid heating conditions. Carbon dioxide was eliminated and heat was generated to allow polymerization. Under adiabatic and closed conditions, the runaway reaction of MDI can begin at least from 220 °C. Besides it is highly probable that the runaway reaction of MDI can begin from a lower temperature in an actual process scale. More heat was generated than in the previous case and the pressure rose rapidly. A closed 2-mm-thick glass vessel exploded because of the runaway reaction of MDI even if the temperature was lower than 300 °C. Therefore, MDI could cause fatal runaway reactions below 300 °C, where MDI had been assumed to self-polymerize by eliminating carbon dioxide previously.  相似文献   

14.
过氧乙酸溶液的热爆炸分析   总被引:1,自引:0,他引:1  
为有效预防生产、储运和使用中过氧乙酸引发的火灾爆炸事故,采用绝热加速量热仪模拟了15%和10%浓度的过氧乙酸溶液的热爆炸过程,得到了两种浓度的PAA溶液的热分解温度、压力、温升速率随时间变化的关系曲线,并用速率常数法分别计算了反应级数n、表观活化能Ea和指前因子A。经过绝热修正,得到最危险状态下的温度和压力等相关热危险参数,并基于Semenov热爆炸理论推算了三种包装条件下两种样品的不可逆温度和自加速分解温度。结果表明,15%PAA和10%PAA溶液热分解反应级数均为一级,表观活化能分别为1044kJ·mol-1和1032kJ·mol-1;绝热条件下初始放热温度分别为429℃和293℃;自加速分解温度受反应系统到达最大反应速率的时间、物料存储规模及散热条件的影响,建议PAA应储存在通风背阴处且单个包装容积应控制在25L以下。  相似文献   

15.
苯和甲苯硝化及磺化反应热危险性分级研究   总被引:1,自引:1,他引:0  
首先介绍了化工工艺热安全性的内涵,并从反应过程热危险性分析的方法学出发,介绍间隙、半间歇化学反应工艺热危险性分级研究的总体思路及方法。然后,围绕甲苯和苯的硝化、磺化反应,用全自动反应量热仪(RC1e)和加速度量热仪(ARC)测定其反应过程的绝热温升(△Tad)、目标反应所能达到的最高温度(TM)、分解反应最大速率到达时间(θD)等参数。运用风险评价指数矩阵法(方法1)和基于失控过程温度参数的热危险评估法(方法2)分别对其硝化和磺化反应过程的热危险性进行了分级评估。结果表明,这两种方法具有良好的一致性;给定工艺条件下甲苯和苯的一段硝化反应过程的热危险度等级较低;而磺化反应的热危险较高。尽管这两种方法还有一定的局限性,但对于间歇、半间歇合成工艺的本质安全化设计、工艺热危险性的评估具有重要的参考价值和实用意义。  相似文献   

16.
1-((cyano-1-methylethyl) azo) formamide (CABN) is an azo compound that exhibits high thermal sensitivity and self-reactivity. Because of incorrect operation, incompatible substances and other dangerous conditions, thermal explosion accidents may occur during the manufacturing, storage, and transportation of CABN. The pyrolysis characteristics of CABN and its mixture for various heating rates were assessed using differential scanning calorimetry. The results showed that incompatible substances increased the risk of CABN. Moreover, the thermal runaway of CABN under an adiabatic condition was studied using an adiabatic rate calorimeter to obtain the parameters under adiabatic condition. Based on the experimental data, the kinetic parameters of CABN and its mixtures were obtained. In addition, a thermal decomposition kinetic model of CABN was created using Thermal Safety Series. All experiments have shown that the conditions and parameters of CABN must be strictly controlled.  相似文献   

17.
过氧化甲乙酮的热危险性研究   总被引:1,自引:0,他引:1  
为研究过氧化甲乙酮(MEKPO)在运输与储存中的热危险性,利用差示扫描量热仪(DSC)对质量分数为52%的MEKPO溶液(以2,2,4-三甲基-1,3-戊二醇二异丁酸酯为溶剂)进行测试,得到其起始分解温度T0约为40℃,比放热量ΔH约为1.24 kJ/g。运用加速量热仪(ARC)对3种MEKPO溶液(40%,45%和52%)及MEKPO纯品(化学纯)在绝热条件下进行了热分解测试,并在此基础上,借助Semenov热爆炸模型,计算得到上述样品在50 kg包件下的自加速分解温度(TSADT)分别为65.64,63.72,55.88和51.17℃。研究结果表明,加入稀释稳定剂是降低MEKPO热危险性的有效途径,且MEKPO混合物中其质量分数越大,其危险性越高。  相似文献   

18.
19.
绝热加速量热仪在化工生产热危险性评价中的应用   总被引:5,自引:1,他引:5  
本文介绍了一种新型热危险性分析仪器--绝热加速量热仪的设计原理和内部结构,运行模式以及所能获得的温度、压力和最大温升速率时间等数据类型.并通过阐述其在化学动力学研究、自加速分解温度的计算、化学工艺安全性分析和化学工艺过程开发以及热爆炸事故原因调查等方面的应用,指出了绝热加速量热仪在化工生产危险评价方面的特点和优势.  相似文献   

20.
随着本质安全研究的深入,道化学评价方法中物质系数MF的计算已不能准确描述反应物本身的热风险大小。在道化学评价方法中引入热风险概念,比较热危险性评价方法和道化学评价方法间相异点;以六甲基磷酰三胺工艺为研究对象,用DSC量热仪对反应物进行分析得出放热速率q、反应波峰峰值、单位质量的反应焓Hr,对采集的工艺参数用热力学理论外推法、基因贡献法得出活化能E、比热容CP并以此求出最大反应失效时间TMRad、绝热温升Qad、物质系数MF值以及工艺单元中物料量。得出最大反应失效时间与物质系数MF间具有相关性,道化学评价方法对因失效反应引发二次反应的热风险评估也适用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号