首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many practical situations, a flame may propagate along a pipe, accelerate and perhaps transform into a devastating detonation. This phenomenology has been known, more or less qualitatively, for a long time and mitigation techniques were proposed to try and avoid this occurrence (flame arresters, vents,...). A number of parameters need to be known and in particular the “distance to detonation” and more generally the flame acceleration characteristic scales. Very often, the ratio between the detonation run-up distance and the pipe diameter is used without any strong justification other that using a non-dimensional parameter (L/D). In this paper, novel experimental evidence is presented on the basis of relatively large scale experiments using 10 cm and 25 cm inner diameter duct with a length between 7 and 40 m. Homogeneous C2H4-air, CH4-air, C3H8-air and H2-air mixtures were used and different ignition sources. The interpretation suggests that the self-acceleration mechanism of the flame may be much better represented by flame instabilities than by turbulence build-up. One consequence would be that the maximum flame velocity and, following, the maximum explosion overpressure, would be rather linked with the run-up distance than with the L/D ratio.  相似文献   

2.
The auto-ignition temperature (AIT) is an important parameter in the process industries. In order to ensure a safe working environment in process industries, it is important to predict the AIT of combustible gases or vapors. In this study, the AITs of natural gas mixtures (CH4–Air, C3H8–Air, CH4–C3H8–Air and CH4–CO2–Air) are calculated based on a detailed kinetic model. To create a more practical model, different ignition criteria and convective heat transfer coefficients are investigated and compared against one another, resulting in the temperature criterion and a convective heat transfer coefficient of h = 50 W/(m2 K). The results showed that the AITs of CH4–Air and C3H8–Air decrease with an increase of equivalence ratios. While the propane ratio increasing, the AIT of CH4–C3H8–Air decreasing. Reaction path analysis of natural gas mixtures (CH4–C3H8) was also carried out to explain this phenomenon, yielding results showing that C3H8 is the main reaction during the ignition induction period. In addition the AIT of CH4 increases slowly in positive correlation with CO2, which plays a role of an inert gas. Comparing the results with literature work revealed a deviation of about 10%. Thus, it can be reasonably concluded that the AIT of a low hydrocarbons mixtures such as natural gas can be reliably predicted with detailed kinetic model.  相似文献   

3.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   

4.
In this study, the dependence of minimum ignition energies (MIE) on ignition geometry, ignition source radius and mixture composition is investigated numerically for methane/air and iso-octane/air mixtures. Methane and iso-octane are both important hydrocarbon fuels, but differ strongly with respect to their Lewis numbers. Lean iso-octane air mixtures have particularly large Lewis numbers. The results show that within the flammability limits, the MIE for both mixtures stays almost constant, and increases rapidly at the limits. The MIEs for both fuels are also similar within the flammability limits. Furthermore, the MIEs of iso-octane/air mixtures with a small spherical ignition source increase rapidly for lean mixtures. Here the Lewis number is above unity, and thus, the flame may quench because of flame curvature effects. The observations show a distinct difference between ignition and flame propagation for iso-octane. The minimum energy required for initiating a successful flame propagation can be considerably higher than that required for initiating an ignition in the ignition volume. For iso-octane with a small spherical ignition source, this effect was observed at all equivalence ratios. For iso-octane with cylindrical ignition sources, the phenomenon appeared at lower equivalence ratios only, where the mixture's Lewis number is large. For methane fuel, the effect was negligible. The results highlight the significance of molecular transport properties on the decision whether or not an ignitable mixture can evolve into a propagating flame.  相似文献   

5.
This paper reports the results of flammability studies for methane, propane, hydrogen, and deuterium gases in air conducted by the Pittsburgh Research Laboratory. Knowledge of the explosion hazards of these gases is important to the coal mining industry and to other industries that produce or use flammable gases. The experimental research was conducted in 20 L and 120 L closed explosion chambers under both quiescent and turbulent conditions, using both electric spark and pyrotechnic ignition sources. The data reported here generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results illustrate the complications associated with buoyancy, turbulence, selective diffusion, and ignitor strength versus chamber size. Although the lower flammable limits (LFLs) are well defined for methane (CH4) and propane (C3H8), the LFLs for hydrogen (H2) and its heavier isotope deuterium (D2) are much more dependent on the limit criterion chosen. A similar behavior is observed for the upper flammable limit of propane. The data presented include lower and upper flammable limits, maximum pressures, and maximum rates of pressure rise. The rates of pressure rise, even when normalized by the cube root of the chamber volume (V1/3), are shown to be sensitive to chamber size.  相似文献   

6.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

7.
Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH4)-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO4) cell model was tolerant to crush-induced internal short circuits within CH4-air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH4-air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl2) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.  相似文献   

8.
Deposition of combustible dust on a hot surface is a hidden danger of fire. In this work, polymethylmethacrylate (PMMA) dust was selected to analyse the influence of dust layer diameter, dust particle size and dust layer thickness on the ignition characteristics of PMMA dust layer. Critical heating temperatures and ignition time had been measured. The STA-GC/MS-FTIR analysis was used to determine that the main products of PMMA pyrolysis were MMA, CO, CO2, and C2H4, of which CO and C2H4 were transported to the ambient to cause gas phase combustion on the surface of the dust layer. For 10 mm thick dust layer, the critical heating temperatures of 5 μm PMMA, 100 nm PMMA, and 30 μm PMMA were 300 °C, 330 °C, and 320 °C. As the thickness of the dust layer increased, the gas transport path became longer, the critical heating temperature and ignition time increased. The characteristic particle size (D [3,2]) was utilized to represent the true particle size, and the ignition time increased with the increase of the characteristic particle size. The increase in the diameter of the dust layer had a slight effect on the temperature history and ignition time of the dust layer.  相似文献   

9.
The influence of additives of various chemical natures (CH4, N2, CO2, and steam) at a laminar burning velocity Su of hydrogen in air has been studied by numerical modelling of a flat flame propagation in a gaseous mixture. It was found that the additives of methane to hydrogen–air mixtures cause as a rule monotonic reduction in the Su value with the exception of very lean mixtures (fuel equivalence ratio ? = 0.4), for which a dependence of the laminar burning velocity on the additive's concentration has a maximum. In the case of the chemically inert additives (N2, CO2, H2O) the laminar burning velocity of rich near-limit hydrogen–air flames drops monotonically with an increase in the additive's content, but no more than 1.5 times, and the adiabatic flame temperature changes slowly in this case. In the case of methane as the additive, the laminar burning velocity is diminished approximately 5 times with an increase in the adiabatic flame temperature from 1200 to 2100 K. Deviations from the known empirical rule of the approximate constancy of the laminar burning velocity for near-limit flames are shown.  相似文献   

10.
Experimental studies were done with a small pipe with a diameter of 0.043 m and a large pipe with a diameter of 0.49 m to demonstrate the flame propagation suppression with inertia isolation in a long duct. Tests were carried in an ignition section containing propylene/air mixture near stoichiometric concentration and generating a peak flame propagation speed of approximately 100 m/s. The ignition section is connected to a section filled with an inert gas, another section with flammable mixtures, and finally a sufficiently long, ambient section to accommodate flame propagation. The critical length of the inert gas section required for successful suppression of flame from the igniting the flammable section is found to be 0.6 m for CO2 and 0.9 m for N2 in the large pipe and 0.2 m for CO2 and 0.3 m for N2 in the small pipe. Additional tests with a 3 m of ignition section and peak flame propagation speed of 225 m/s showed that the critical length for successful suppression by CO2 is only increased slightly to 0.9 m, confirming that the suppression is a result of inertia isolation rather than inert gas dilution. Finally, application of the results in responding to large-scale leak into a long, underground duct is discussed.  相似文献   

11.
Explosive gas mixtures and explosive dust clouds, once existing, exhibit similar ignition and combustion features. However, there are two basic differences between dusts and gases which are of substantially greater significance in design of safety standards than these similarities. Firstly, the physics of generation and up-keeping of dust clouds and premixed gas/vapour clouds are substantially different. This means that in most situations where accidental explosive gas clouds may be produced quite readily, generation of explosive dust clouds would be highly unlikely. Secondly, contrary to premixed gas flame propagation, the propagation of flames in dust/air mixtures is not limited only to the flammable dust concentration range of dynamic clouds. The state of stagnant layers/deposits offers an additional discrete possibility of flame propagation.

The two European Directives 94/9/EC (1994) and 1999/92/EC (1999) primarily address gases/vapours, whereas the particular properties of dusts are not addressed adequately. Some recent IEC and European dust standards resulting from this deficiency are discussed, and the need for revising the two directives accordingly is emphasized.  相似文献   


12.
Oil gas explosion in long-narrow confined space is a typical unsteady combustion process. To study the reaction process, two experiment techniques are adopted in this research. One is planner laser induced fluorescence, which is used to achieve the transient measurement of free radicals in unsteady premixed combustion field. The other one is the spectral testing technique, which is used to measure the luminescence spectrum characteristics of oil gas combustion flame. The distribution of OH radical and CH radical at different positions in the combustion field, the common partition of deflagration flame structure under different oil gas concentrations, and the main luminescence spectra of radicals such as OH, CH, C2, C3, CO2, H2O and HCO are obtained. By comparing the above three aspects, the combustion reaction process of premixed mixture is revealed, driven by the coupling effect of chemical reaction and fluid flow in the process of explosion propagation. The process can be described briefly as follows. In the “outer flame zone”, large hydrocarbon molecules are mainly transformed to small molecules and free radicals by means of pyrolysis, dehydrogenation and oxidation. In the “inner flame zone”, carbon particles and combustion products produced and gathered after relevant reactions.  相似文献   

13.
Diethyl ether (DEE), epoxypropane (PO) and n-pentane have excellent ignition and combustion performance; hence, they have a wide variety of applications in industry and advanced aviation propulsion systems. As these fuels are flammable at normal temperature and pressure, their explosive characteristics need to be explored. In this study, the lower flammability limits (LFLs) of vapor mixtures of DEE/PO/n-pentane in air were measured in 20 L, closed, stainless steel spherical vessels. Experimental results were obtained at ambient atmospheric pressure and an initial temperature of 40 °C. The experimental results show that the LFLs of DEE-air, n-pentane -air, and PO-air are 1.81 vol%, 1.41 vol% and 2.44 vol%, respectively. The LFLs of binary/ternary fuel mixtures under different compositions were tested, and the experimental results are compared with the classical Le Chatelier's formula. The results show that, for the binary fuels (i.e., DEE/PO, DEE/n-pentane, PO/n-pentane)-air mixtures, the maximum difference of the LFLs between Le Chatelier's formula and the experimental results is 6.10%. For the ternary fuels (i.e., DEE/PO/n-pentane)-air mixtures, the maximum difference of the LFLs between the two results is 6.33%. Due to the adiabatic flame temperature of each single fuel mixture being close, the Le Chatelier's formula is applicable for an estimation of the LFL for DEE/PO/n-pentane-air mixtures.  相似文献   

14.
The research presented in this paper is focused on dust explosions of coarse and fine flocculent (or fibrous) samples of wood and polyethylene. Hybrid mixtures of fibrous polyethylene and admixed ethylene were also studied. Experimentation was conducted by following standardized test procedures and using standardized apparatus for determination of maximum explosion pressure, size-normalized maximum rate of pressure rise, minimum explosible concentration, minimum ignition energy, and minimum ignition temperature. A general trend was observed of enhanced explosion likelihood and consequence severity with a decrease in material diameter, as well as enhanced consequence severity with admixture of a flammable gas to the combustion atmosphere. The same phenomena are well-established for dusts composed of spherical particles; this highlights the importance of inherently safer design and the principle of moderation in avoiding the generation of fine sizes of flocculent dusts and hybrid mixtures of such materials with flammable gases.In addition to presenting experimental findings, the paper describes phenomenological modelling efforts for the flocculent polyethylene using four geometric equivalence models: radial equivalence, volumetric equivalence, surface area equivalence, and specific surface area equivalence. The surface area equivalence model was found to yield the best estimates of maximum rate of pressure rise for the flocculent polyethylene samples investigated experimentally.  相似文献   

15.
In this study, a physical model of the dust cloud ignition process is developed for both cylindrical coordinates with a straight-line shaped ignition source and spherical coordinates with a point shaped ignition source. Using this model, a numerical algorithm for the calculation of the minimum ignition energy (MIE) is established and validated. This algorithm can evaluate MIEs of dusts and their mixtures with different dust concentrations and particle sizes. Although the average calculated cylindrical MIE (MIEcylindrical) of the studied dusts only amounts to 63.9% of the average experimental MIE value due to reasons including high idealization of the numerical model and possible energy losses in the experimental tests, the algorithm with cylindrical coordinates correctly predicts the experimental MIE variation trends against particle diameter and dust concentration. There is a power function relationship between the MIE and particle diameter of the type MIE ∝ dpk with k being approximately 2 for cylindrical coordinates and 3 for spherical coordinates. Moreover, as dust concentration increases MIE(conc) first drops because of the decreasing average distance between particles and, at fuel-lean concentrations the increasing dust cloud combustion heat; however, after the dust concentration rises beyond a certain value, MIE(conc) starts to increase as a result of the increasingly significant heat sink effect from the particles and, at fuel-rich concentrations the no longer increasing dust cloud combustion heat.  相似文献   

16.
The effect of carbon dioxide (CO2) concentration on the ignition behaviour of hydrocarbon and CO2 gas mixtures is examined in both jets and confined explosions. Results from explosion tests are presented using a 20 l explosion sphere and an 8 m long section of 1.04 m diameter pipeline. Experiments to assess the flame stability and ignition probability in free-jets are reported for a range of different release velocities. An empirically-based flammability factor model for free-jets is also presented and results are compared to ignition probability measurements previously reported in the literature and those resulting from the present tests.The results help to understand how CO2 changes the severity of fires and explosions resulting from hydrocarbon releases. They also demonstrate that it is possible to ignite gas mixtures when the mean concentration is outside the flammable range. This information may be useful for risk assessments of offshore platforms involved in carbon sequestration or enhanced oil recovery, or in assessing the hazards posed by poorly-inerted hydrocarbon processing plant.  相似文献   

17.
Flammable aerosols have created many fire and explosion hazards in the process industry, but the flammability of aerosols has not been fully understood. The minimum ignition energy has been widely used as an indicator for flammability of combustible mixtures, but the amount of experimental data on the minimum ignition energy of aerosols is very limited. In this work, the minimum ignition energy of tetralin aerosols is predicted using an integrated model. The model applies the flame front propagation theory in aerosol systems to the growth of the flame kernel, which was created during the spark discharge in the ignition process. The aerosol minimum ignition energy was defined as the minimum level of energy in the initial flame kernel to maintain the kernel temperature above the minimum ignition temperature of 1073 K specific for tetralin aerosols during the kernel growth. The minimum ignition energy obtained in the model is influenced by the fuel-air equivalence ratio and the size of the aerosol droplets. For tetralin aerosols of 40 μm diameter, Emin decreases significantly from 0.32 mJ to 4.3 × 10 e−3 mJ when the equivalence ratio rises from 0.57 to 1.0. For tetralin aerosols of 0.57 equivalence ratio, Emin increases from as 0.09 mJ to 0.32 mJ when the droplet diameter rises from 10 μm to 60 μm. The trends are in agreement with previous experimental observations. The method used in current work has the potential to prediction of the minimum ignition energy of aerosol.  相似文献   

18.
It is urgent to explore effective suppression methods for gas fires and explosions to ensure the safe utilizations of combustible gases in industrial processes. In this work, experiments are performed to study the effect of spherical ceramic pellets on premixed methane-air flame propagation in a closed duct. High-speed schlieren photography and pressure transducers are used to record the flame propagation and pressure transient, respectively. Behaviors of the flame propagating through a section of the duct filled with ceramic pellets in mixtures at different equivalence ratios are scrutinized. Three different diameters of pellets are considered in the experiments. The result shows that the flame can be quenched in the case with a smaller pellet diameter (3 mm) for a wide range of equivalence ratios from fuel-lean to fuel-rich mixture. For larger pellet diameter (5 or 10 mm), flame extinction occurs in fuel-rich mixtures (e.g. Φ = 1.1, 1.2). For the cases of flame surviving through the pellets bed, the pellets show a significant influence on the flame structure and behavior. The flame propagation depends on the porosity and the mean void diameter of the porous media in the pellets bed. Small void diameter is beneficial to flame quenching, while large porosity can accelerate the flame propagation. The pressure dynamics evolution is closely related to the interaction of flame with the pellets, and it depends on whether the flame quenches in the pellets bed. Overall, d = 3 mm ceramic pellets display the best suppression effect on flame propagation and pressure buildup in this study. The results of this study are of great significance to guide the safety design of spherical suppression materials in engineering applications for process safety researchers and engineers.  相似文献   

19.
Wood products are easy to produce dust in the production and processing process, and have a serious explosion risk. In order to improve the safety of wood products production, the inhibiting effects of magnesium hydroxide (MTH), SiO2, melamine polyphosphate (MPP) on the minimum ignition energy (MIE) and minimum ignition temperature (MIT) of wood dust were experimentally studied. The results showed that the inhibiting effects of inhibitors on the MIE of wood dust show the order of MPP > SiO2>MTH. The order of the inhibiting effects on the MIT of wood dust was MPP > MTH > SiO2. When 10% MPP was added to wood dust, the time when the flame appears (Tappear) and the time when the flame reaches the top of the glass tube (Ttop) obviously rose to 80, 140 ms. Therefore, MPP had the best inhibiting effect on the ignition sensitivity of wood dust.According to thermogravimetry (TG), differential scanning calorimetry (DSC) tests, the introduction of MPP leaded to lower maximum mass loss rate (MMLR), higher temperature corresponding to mass loss of 90% (T0.1), residual mass and heat absorption. In addition, thermogravimetric analysis/infrared spectrometry (TG-IR) results showed that MPP produced H2O (g) and NH3 (g) during the thermal decomposition process, which diluted the oxygen.  相似文献   

20.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号