首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在油气田开发过程中,通常采用气液相混输模式,管道受腐蚀等因素影响容易出现穿孔而发生两相流泄漏。为分析两相流泄漏特性,对管内常见流型分层流下的微孔泄漏特性进行数值和实验分析;采用VOF耦合Level set算法分析了不同影响因素下的气液两相泄漏特性,设计了1种管道泄漏收集装置,进行室内两相流泄漏实验,并验证了数值预测模型的准确性。研究结果表明:气液两相流经过管壁泄漏口时会发生相分离,泄漏特性受小孔方位、管路内外压差、气液相流速影响较大;泄漏口位于管路侧壁时的泄漏特性与其他角度下的泄漏特性有所不同,可用泄漏影响区内的气液分布进行解释;当泄漏口位于管路底部时,存在临界液相分流系数,当液相分流比小于此临界值时,泄漏流体为单相液体。VOF耦合Level set算法的数值方法可为管路泄漏量预测和相分离特性分析提供参考。  相似文献   

2.
为了探索非金属输送管道泄漏规律,从数值模拟和试验两个角度,对液体PE管道发生泄漏前后管道内流体与泄漏口的流动状态进行了对比分析,为判定管道泄漏提供了依据。运用FLUENT软件针对PE液体管道泄漏,在不同孔径、不同压力下,构建管道泄漏模型分别进行仿真,分析不同泄漏情景下压力梯度的分布规律。同时在近似相同条件下进行PE管道两点泄漏模拟试验。结果显示:数值模拟与试验结果基本一致,泄漏孔处压力、流速均与管内初始压力成正相关;初始压力和孔径的增大,会导致管内压力下降速度上升,但最终会趋于稳定值。  相似文献   

3.
This paper presents a technique for detection and location of leaks in a single pipe, by means of transient analysis, of hydrogen–natural gas mixtures flows. The method uses transient pressure waves initiated by the sudden closure of a downstream shut-off valve. The presence of a leak in a pipe partially reflects these pressure waves and allows for the location of the leak. Pressure waves are governed by two coupled non-linear, hyperbolic partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principal dependent variables. To determine the leak location, the mathematical formulation has been solved by the characteristics method of specified time intervals. The computed results describe the influence of the leak on pressure time-history and the effect of hydrogen mass fraction in the mixture on the leak discharge behaviour. It was found that transient pressure is much important in the case of hydrogen than that in the case of natural gas.  相似文献   

4.
With the development of natural gas transportation systems, major accidents can result from internal gas leaks in pipelines that transport high-pressure gases. Leaks in pipelines that carry natural gas result in enormous financial loss to the industry and affect public health. Hence, leak detection and localization is a major concern for researchers studying pipeline systems. To ensure the safety and improve the efficiency of pipeline emergency repair, a high-pressure and long-distance circular pipe leakage simulation platform is designed and established by similarity analysis with a field transmission pipeline, and an integrated leakage detection and localization model for gas pipelines is proposed. Given that the spread velocity of acoustic waves in pipelines is related to the properties of the medium, such as pressure, density, specific heat, and so on, this paper proposes a modified acoustic velocity and location formula. An improved wavelet double-threshold de-noising optimization method is also proposed to address the original acoustic wave signal collected by the test platform. Finally, the least squares support vector machine (LS-SVM) method is applied to determine the leakage degree and operation condition. Experimental results show that the integrated model can enhance the accuracy and precision of pipeline leakage detection and localization.  相似文献   

5.
利用计算流体动力学软件Fluent对厂房内易燃易爆气体H2泄漏扩散过程进行了数值模拟,研究H2连续泄漏扩散规律。计算结果表明,厂房内H2泄漏一定时间后扩散将达到稳定,室内H2浓度将不再变化;根据室内H2浓度分布规律,得出H2泄漏报警装置应设在泄漏口正对墙壁上,且厂房的排风口应开设在H2钢瓶喷射方向上的屋顶处;结合H2的毒性级别和爆炸极限,划分该厂房为紧急防爆疏散区,必须在泄漏初期进行紧急人员疏散并做好防火防爆措施。研究结果为厂房内H2泄漏事故应急救援、泄漏报警装置及排风口的位置设置提供重要技术支持和理论依据。  相似文献   

6.
In order to assess the potential risk of pipeline underwater leakage, a self-designed experimental setup is carried out to study the gas release rate and dispersion behavior in different release scenarios. A transparent organic glass tank with dimension of 1 m × 0.5 m × 0.5 m (height × width × length) was placed in a wind tunnel. The release pipeline made by stainless-steel with diameter of 25 mm were used to simulate for variation release depth. The different size and shape of leakage orifices in 1 mm, 3 mm, 5 mm in round and 3.5 × 2 mm, 7 × 1 mm in rectangle were designed for comparison. The medium of methane gas was released from the controllable cylinder. The variation parameters of flow rate and pressure were measured by a flow meter and pressure gauge respectively. A high speed camera was employed to recorded the phenomenology of dispersion characteristics and breakup process for a wide range of orifice size in the time-resolved images. The dynamic plume diameter on water surface was measured by a Vernier caliper placed above the water tank. The considered factors including orifice size, leakage pressure and water depth effect on gas flow rate and dispersion behavior was quantitative investigated. The fitting correlation between the gas flow rate and variation parameters can provide fundamental information for evaluation the hazard consequences of gas release in engineering application.  相似文献   

7.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

8.
This work investigates the ignition of tetrafluoroethylene induced by the adiabatic compression that can arise by activating a high speed valve separating two portions of a pipeline with a high pressure difference. In the tests performed the high pressure zone contained tetrafluoroethylene at pressures between 15 and 30 bar. For the low pressure zone, experiments with nitrogen, air and tetrafluoroethylene were carried out. The pressure range in the low pressure zone was comprised between 0.05 and 1 bar. The pipe diameters analyzed were 15 and 20 mm. For the analyzed geometries, special conditions were required in order to reach reproducible ignitions, namely air at temperatures of at least 105 °C had to be present in the compression pipe. Furthermore, a minimum length of the compression pipe had to be used. The current work describes the experimental setup employed for the tests and discusses the achieved results. Numerical simulations were performed in order to clarify unexpected findings.  相似文献   

9.
Silane is a well known pyrophoric gas which normally ignites upon contact with air. However, a silane release from a pressure source may not always lead to prompt ignition and frequently the ignition occurs when the release is shutoff. In a confined space, significant quantities of silane can accumulate prior to autoignition leading to an explosion, causing significant damage. To date, the mechanism and condition of pure silane ignition upon release into air has not been completely explained. Thus there is a need for additional experimental investigations covering a wide range of release conditions to enable a full understanding of silane ignition and explosion characteristics.This work presents a series of tests that aims to uncover the precise condition for pure silane ignition upon release into air. Tests were performed for releases at controlled and steady velocities. Steady flow of silane to a burn box and nitrogen to the desired vent stub are first established through mass flow controllers. An electrically controlled four-way switching valve is used to switch the silane and nitrogen flow such that steady silane flow without acceleration to the vent stub can be established. With careful control of vent conditions, we are able to find a reproducible critical exit velocity for prompt ignition of steady silane releases for different vent diameters. If the releases are reduced to below the critical exit velocity, prompt ignition of silane release is ensured. Above this critical exit velocity, silane can be released indefinitely into air without any ignition. The critical exit velocity is found to vary with the vent diameter. This relationship between the critical exit velocity and the vent diameter suggests that the silane release without prompt ignition was most likely caused by quench of the reactive kernel from the scalar dissipation between the release gas and the ambient air. Analysis of locations where prompt ignition occurred from the clips from high speed video camera found that the most reactive ignition kernel occurs in the range when the ratio of volumetric flow rate of entrained air to the silane flow reaches 0.322 ± 0.076, which is equivalent to the most reactive silane concentration of 75.6% in air. The implications from these results are discussed with emphasis on the safety of silane supply systems and operation practices.  相似文献   

10.
为了实时动态监测采空区构筑物漏风情况,自主研发了一种井下采空区构筑物漏风实测装置。通过现场实测及应用,研究结果表明:风流从工作面上进风口漏入采空区,而采空区中风流一部分通过与工作面之间的漏风流进入工作面下进风口,在下隅角位置附近形成一个涡流区;另一部分风流穿过沿空留巷构筑物进入留巷内,由于采空区的压实程度不同,采空区侧留巷内漏风速度曲线近似呈“L”型下降;通过收集分析留巷内漏风气体,其结果可反映采空区中瓦斯浓度分布情况,为采空区瓦斯治理提供了一种新的监测技术手段,且能有效地降低采空区瓦斯事故发生率,保证矿井的安全生产。  相似文献   

11.
为减小压力容器气体泄漏实时位置估算误差,准确监测容器工况,首先,从声学监测角度提出一种引入鲸鱼优化算法(WOA)的泄漏源估计方法,采用波达方向(DOA)估计法预测气体泄漏位置方向,获得泄漏源角坐标;然后,引入WOA自适应选择方法分解DOA的特征值,多次迭代得到最精确的泄漏位置;最后,以某化工厂中压力容器数据为实际算例,...  相似文献   

12.
为研究不同封闭情况下T型管道中瓦斯爆炸的传播规律,在90°分岔管道中进行瓦斯爆炸实验,管道封闭情况为弱封闭(双PVC薄膜弱封闭)和强封闭(直管封闭或支管封闭)。实验结果表明:在瓦斯浓度为9.5%时,管道中各点处的瓦斯爆炸压力、火焰传播速度和火焰锋面振荡幅度最大,11%次之,8%最小。T型管道中,弱封闭端瓦斯爆炸压力不断减小;火焰传播速度先缓慢增大后减小,随后又快速增大。强封闭端,瓦斯爆炸压力增大;火焰传播速度先缓慢增大后略微下降,随后快速增大后又大幅度下降,甚至出现火焰锋面振荡现象。不同封闭管道中各测点的瓦斯最大爆炸压力和火焰传播速度大小比较可知,直管封闭管道>双PVC薄膜弱封闭管道>支管封闭管道。  相似文献   

13.
为研究泄漏孔的各种因素对深埋土体中燃气管道泄漏的具体影响,采用1个包含燃气管道的三维模型,研究单个泄漏孔的大小、位置、形状对于埋地燃气管道泄漏的影响,并建立大小相等的双泄漏孔的燃气管道,确定双泄漏孔间距对于燃气泄漏扩散的影响。结果表明:泄漏孔越大,燃气在土壤中的扩散速度越快,且泄漏孔的大小对深埋燃气管道泄漏的影响最大;泄漏孔位置的影响次之,顶部与侧壁的泄漏孔扩散速度相差无几,底部泄漏孔的扩散速度远低于前2者;双泄漏孔间距的影响较小,双泄漏孔的距离越小,甲烷的扩散速度越快;泄漏孔形状对于深埋燃气管道泄漏扩散的影响非常小。  相似文献   

14.
为了研究输气管道泄漏压力波的频谱特性,基于大涡模拟对管道泄漏进行了非稳态分析。模拟了不同管道压力、不同泄漏孔径以及不同管道气体流速下的泄漏压力波频谱分布,探讨了不同条件对压力波频谱特性的影响。所得结论对各类管道泄漏压力波的频谱分析具有一定的借鉴作用。  相似文献   

15.
由于大倾角坚硬顶板煤层采空区地质条件复杂,漏风规律复杂多变,因而煤自燃危险性较大。利用SF6作为示踪气体对龙东煤矿7162工作面采空区和邻近采空区进行漏风检测,得到7162工作面采空区漏风的基本分布规律。采空区内的漏风出口主要是上隅角处后部的未压实巷道,最小漏风风速随深度的增加而减少,邻近采空区的漏风与煤柱完整程度及断层大小有关,最大漏风量占到正常总供风量的27%。根据漏风检测结果,利用Fluent软件对采空区漏风渗流场进行数值模拟,得到了采空区风压和风速分布规律,离工作面距离大于100 m的采空区内部几乎不存在漏风,保留煤柱的存在使风流更容易进入采空区内部。该研究成果为采空区煤炭自燃防治提供了科学指导。  相似文献   

16.
天然气在土壤中扩散行为的实验研究对埋地管道泄漏点的科学定位及泄漏事故的预防具有重要意义.采用全尺度气体泄漏实验系统,模拟真实埋地管道泄漏场景,对泄漏后的天然气在土壤中的扩散对流过程进行实验研究.基于自行研制的气体检测与数据采集系统和GasClam地下气体在线监测仪,分析天然气在土壤中的对流扩散规律.结果表明:埋地管道泄漏后天然气在土壤中的对流扩散过程可以分为4个阶段:孕育阶段、陡然增长阶段、缓慢增长阶段和稳定阶段,其浓度随泄漏时间的变化过程符合S型曲线特征.天然气扩散至检测点所需时间与距泄漏口距离呈现近似的幂指数关系.当检测点位于泄漏口附近区域时,泄漏压力起主导作用.当检测点位于远离泄漏口区域时,泄漏量起主导作用.  相似文献   

17.
城区天然气管道泄漏数值模拟与爆炸危害分析   总被引:1,自引:0,他引:1  
在人口密度为三级和四级的城区内,密集的高建筑物对天然气管道泄漏后的扩散和流场形成产生重要影响。本文以某城市的实际情况为例,建立多建筑物的空间几何模型,采用k-ε湍流方程,SIMPLE算法,模拟了在三种不同风流速度、三种不同压力条件下,城区天然气管道泄漏气体在多建筑物地形中的扩散情况。根据模拟结果,依据天然气的爆炸极限,对模拟结果及其火灾爆炸危害的范围进行了对比分析。结果表明,CH4气体的泄漏扩散同时受管道压力、风流速度和周围建筑物的影响;同时受当地风速的影响,泄漏气柱在风流作用下会发生偏折,造成阻挡风流的建筑物内侧危险气体浓度升高,大大增加建筑物周围环境的危险性。研究结果对城区天然气管道的建设具有一定的指导意义。  相似文献   

18.
Small scale tests were carried out at ISL's shock tube facility STA (100 mm inner diameter) to study the problem of closing a pipeline by means of an airbag in case of explosions or gas leakages. Experiments were carried out to simulate the flow in a pipeline at velocities and gas pressures as present in pipeline flows. In this study the gas used was nitrogen at static pressures of 0.2 up to 5 MPa and at flow velocities of 25 m/s up to 170 m/s. A special Nylon airbag, deployed from the tube wall into the pipe, was used to simulate the airbag inflation in a real pipeline. For this purpose a special gas filling system consisting of a gas generator with a reservoir volume of up to 500 cm3 which permits air pressures up to 17 MPa to be generated inside the airbag was developed at ISL. With a fast pyrotechnically opened valve the reservoir gas was released for airbag filling. The airbag inflation was triggered in such a way that it opened in nearly 3 ms into the pipe flow generated by the shock tube and continued for about 10 ms. For this application a special measuring chamber was designed and constructed with 20 measuring ports. Through two window ports, located one in front of the other, the airbag inflation could be visualized with up to 50 successive flash sparks illuminating a fast rotating film inside a drum camera. Pressure measurements using commercially available PCB pressure gauges at 9 measuring ports placed along the inner tube surface gave some hints on the behaviour of the wall pressure during airbag deployment. As a result from the experiments performed it is to conclude, that, with the Nylon airbag samples available, the pipe flow cannot be blocked by the inflating airbag. The flow forces acting on the airbag during deployment are in the shock tube experiments of the order of about 1000 N, which are not balanced by the airbags' neck, fixing it to the shock tube wall. This outcome suggests that a mechanical support is required to fix the airbag in its place during inflation.  相似文献   

19.
In order to figure out the principles of acoustic leak detection for natural gas pipelines, a study on the leak-acoustics generation mechanism is carried out. The aero-acoustics generation mechanism is analyzed and when leakage occurs the wave equations of sonic sources are developed. The leak-acoustics generated by the quadrupole and dipole sonic sources are then simulated to obtain the laws of the acoustic characteristics. The simulation data are compared with the experimental data to verify the simulation accuracy under variable operating conditions. The results show that the quadrupoles and the dipoles generated by turbulent fluctuations cause leak-acoustics; the main component of pressure perturbations acquired by the dynamic pressure sensor is acoustic perturbations; both the simulation method and the experimental method can be applied to study the leak-acoustics generation mechanism of natural gas pipelines.  相似文献   

20.
为研究不同的多点泄漏工况对管道流动参数的影响,基于流动方程建立数学模型,讨论泄漏后压力下降幅值与泄漏位置、泄漏点数的关系,在室内输气环道采集多点泄漏工况下的压力信号并对理论分析结果进行验证。结果表明:泄漏点的上游和下游压力均减小,越靠近泄漏点压力降越大;2个泄漏点之间压力也下降,越靠近上游泄漏点,压力下降幅度越大;泄漏点距起点越近,泄漏引起的压力降低幅值越大。压力下降的幅值受距离起点最近的泄漏点位置影响最大,且随着泄漏点数的增多而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号