首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

2.
    
Dust explosion venting experiments were performed using a 20-L spherical chamber at elevated static activation overpressures larger than 1 bar. Lycopodium dust samples with mean diameter of 70 μm and electric igniters with 0.5 KJ ignition energy were used in the experiments. Explosion overpressures in the chamber and flame appearances near the vent were recorded simultaneously. The results indicated that the flame appeared as the under-expanded free jet with shock diamonds, when the overpressure in the chamber was larger than the critical pressure during the venting process. The flame appeared as the normal constant-pressure combustion when the pressure venting process finished. Three types of venting processes were concluded in the experiments: no secondary flame and no secondary explosion, secondary flame, secondary explosion. The occurrence of the secondary explosions near the vent was related to the vent diameter and the static activation overpressure. Larger diameters and lower static activation overpressures were beneficial to the occurrence of the secondary explosions. In current experiments, the secondary explosions only occurred at the following combinations of the vent diameter and the static activation overpressure: 40 mm and 1.2 bar, 60 mm and 1.2 bar, 60 mm and 1.8 bar.  相似文献   

3.
    
To further understand the dynamic mechanism of dust explosion through a vent duct, we designed a small-scale cylindrical vessel connected with a vent duct and performed a dust explosion venting experiment under different opening pressures using corn starch as the explosive medium in this study. The results show that weakening effect of duct on venting is positively correlated with the opening pressure. The explosion pressure in the duct presents a three-peak-structure with time, successively caused by the membrane breaking shock wave, the secondary explosion in the tube, and the continuous combustion, and decreases gradually with the propagation distance. Meanwhile, the three pressure peaks are positively correlated with the opening pressure, while the time interval between them goes to contrary. The increase of opening pressure leads to the increase of secondary explosion intensity and reverse flow in the vessel, further accelerates the reaction rate in the vessel, and then shortens the duration of combustion in the vessel until the phenomenon of flame reignition in the vessel disappears.  相似文献   

4.
    
Results from cornstarch explosion tests using a flameless venting device (mounted over a burst disc) on an 8 m3 vessel are presented and used to determine the overall efficiency of the device, which is defined as the ratio between its effective vent area and the nominal vent area. Because these devices are comprised of an arrestor element mounted over an impulsively-actuated venting device (such as a burst disc), the functional form of the overall efficiency is taken as the product of the area efficiency (i.e., the ratio between the effective vent area of the entire assembly to that of the venting device without the arrestor element) and the burst efficiency (i.e., the ratio of the effective vent area of the venting device without the arrestor element to the nominal vent area). The effective vent areas are calculated from measured overpressures using three different empirical correlations (FM Global 2001, NFPA 2007, and VDI 2002). Furthermore, due to significant variations in the effective reactivity from test to test, a correction factor proportional to the initial flame speed is applied when determining the area efficiency. In general, it was found that the FM Global and NFPA methodologies yield consistent results with less scatter than VDI 3673.  相似文献   

5.
    
To develop the application of explosion venting technology in high-pressure vessels, a new model for the design of dust explosion venting size was presented, which took the physicochemical phenomenon deriving from the elevation of the static activation pressure into account. Firstly, for confined pressure rise, the wall quenching effect originating from the dust flame thickness was considered by adopting the three-zone model. Secondly, for the venting pressure rise, the energy loss due to the discharge of high-energy burnt mixture (quantified as the specific surface area loss of the flame) was taken into account and the induced turbulence factor was introduced. Thirdly, for the venting pressure drop, a dynamic pressure relief capability evaluation model which takes into account the flame morphology evolution (tear-shaped flame) and the proportion of discharged mixture (relative volume ratio) at elevated activation pressure was proposed. The predicted maximum reduced pressure and venting size were checked against the PMMA explosion experiments and a more great performance was obtained compared with standards.  相似文献   

6.
    
Venting is an effective way to prevent harmful dust explosions, but the existing prediction methods are imprecise and are suitable only for applications with low activation pressures. A new method is proposed for predicting pressures based on an analysis of energy losses at high activation pressures and verified by aluminum dust explosion experiments. Compared with the experimental results, the results of the new model are relatively stable under working conditions with different activation pressures and venting areas. Based on the analysis of energy losses, the changes in the energy loss rate, temperature, and venting velocity during venting are found to be asynchronous. The thermal energy loss, which accounts for over 80 percent of the total, is expected to be larger than the kinetic energy loss. The thermal energy loss rate changes rapidly during venting, while the kinetic energy loss rate remains relatively stable. The new model is more accurate than the NFPA68 standard, which fails to consider the thermal energy loss. Neglecting the thermal energy loss may result in an underestimation of the pressure reduction; this error increases with decreasing activation pressure.  相似文献   

7.
    
There is a noticeable discrepancy in the ability to control reduced explosion overpressure between flat bursting panels and curved bursting panels with the same static activation overpressure. Flat bursting plates were observed to leak at approximately 80% of the static activation overpressure lower than curved bursting plates. A new experimental technique is proposed in our paper. Three different vent areas of flat and curved bursting panels were tested, there was significant difference in structural stiffness between flat bursting panels and curved bursting panels, which is the reason the discrepancy in the ability to control reduced explosion overpressure. The structural stiffness of the flat bursting panels is poorer than that of the other, and a greater deformation of the flat bursting panels occurs under the same load. The membrane stress caused by the explosion overpressure therefore produces a larger value in the flat bursting panels which causes it to open prematurely. Moreover, the smaller the vent area that is, the more significant discrepancy in controlling the reduced explosion overpressure between both bursting panels is. This experimental and theoretical result in our paper provides some useful experience for the method of explosion venting.  相似文献   

8.
为研究泄爆门对瓦斯爆炸特性参数的影响,自制大直径瓦斯管道爆炸试验系统,在有无泄爆门2种工况下进行瓦斯爆炸试验;通过高速数据采集模块及工控机采集瓦斯爆炸特性参数,分析其变化特征和泄爆效果。结果表明:瓦斯质量分数为9.5%时泄爆门工况下的最大压力是空管工况的1.65倍,压力达到稳定状态的时间有所缩减;爆炸冲击波从测点1传播到测点3时,泄爆门工况下爆炸压力衰减率为62.5%,空管工况仅为14.3%,泄爆门显著衰减了爆炸压力;火焰温度的衰减与泄爆门无关;2种工况下火焰传播速度的最大平均值分别为136.67和113.56 m/s。  相似文献   

9.
A test programme was developed to study factors that may influence the maximum pressure during venting developed during deflagration. The factors considered were vent burst pressure, vent mass, ignition source location, discharge ducting, downstream obstructions and water covers.  相似文献   

10.
为了研究墨粉在爆炸泄压过程中燃烧与流动的变化机制,通过改变泄爆片尺寸、墨粉浓度以及泄爆片的惯性力等参数对爆炸泄放过程中反应釜中压力以及外场火焰形态变化进行试验研究,同时与完全封闭空间内不同墨粉浓度的压力曲线对比。研究结果表明:相同泄爆开口尺寸下,粉尘浓度与受控爆炸压力(采用爆炸泄压保护措施后工业腔体内产生的压力)负相关;开口尺寸增加可以提升泄压效率;结合外场火焰形态的变化情况揭示声动火焰不稳定性对反应釜中压力发展的影响;通过无惯性泄爆试验的对比证明泄爆片惯性对受控爆炸压力的影响不可忽视。  相似文献   

11.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

12.
    
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

13.
Current status and expected future trends in dust explosion research   总被引:4,自引:0,他引:4  
In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized.  相似文献   

14.
    
The structure of flame propagating through lycopodium dust clouds has been investigated experimentally. Upward propagating laminar flames in a vertical duct of 1800 mm height and 150×150 mm square cross-section are observed, and the leading flame front is also visualized using by a high-speed video camera. Although the dust concentration decreases slightly along the height of duct, the leading flame edge propagates upwards at a constant velocity. The maximum upward propagating velocity is 0.50 m/s at a dust concentration of 170 g/m3. Behind the upward propagating flame, some downward propagating flames are also observed. Despite the employment of nearly equal sized particles and its good dispersability and flowability, the reaction zone in lycopodium particles cloud shows the double flame structure in which isolated individual burning particles (0.5–1.0 mm in diameter) and the ball-shaped flames (2–4 mm in diameter; the combustion time of 4–6 ms) surrounding several particles are included. The ball-shaped flame appears as a faint flame in which several luminous spots are distributed, and then it turns into a luminous flame before disappearance. In order to distinguish these ball-shaped flames from others with some exceptions for merged flames, they are defined as independent flames in this study. The flame thickness in a lycopodium dust flame is observed to be 20 mm, about several orders of magnitude higher than that of a premixed gaseous flame. From the microscopic visualization, it was found that the flame front propagating through lycopodium particles is discontinuous and not smooth.  相似文献   

15.
基于石油阻火装置对可燃气体爆炸传播的火焰具有淬熄作用,对压力波具有抑制作用,提出将金属丝网、波纹板型等几种结构用于抑制煤矿瓦斯爆炸传播的新思路,填补了阻火器在煤矿中应用的空白,为煤矿阻隔爆技术开拓出新的领域.  相似文献   

16.
为研究数值模拟边界条件的准确性及泄爆门对瓦斯爆炸的抑制作用,自制大直径爆炸管道试验装置,在瓦斯体积分数9.5%条件下进行瓦斯爆炸试验,同时运用FLUENT软件模拟整个爆炸传播过程,通过对比分析试验数据与模拟结果,分析其变化特征和泄爆效果。结果表明:爆炸冲击波从测点2传播到测点3时,试验和数值模拟方式下压力峰值衰减率分别为51.40%和51.28%,偏差率为0.23%,泄爆门能显著衰减爆炸压力;2种研究方式下温度变化规律相同,测点2、3温度峰值偏差分别为6.99%和6.43%,但泄爆门对火焰温度没有抑制作用;通过对比研究发现,两者得出的结论和变化规律吻合,证实了数值模拟的数学模型、边界条件和初始条件的准确性。  相似文献   

17.
对储存及转运粮食系统除尘粉尘回流问题进行了回顾和评述 ,对天津港散粮站日常处理主要粮食品种伴生粉尘进行了物性分析和粉尘爆炸性测试 ,并结合生产工艺过程进行了设备内部实际粉尘浓度的测试 ,在此基础上得出 :除尘粉尘具有爆炸的危险性 ;爆炸下限较高 ,有利于控制粉尘浓度在爆炸下限以下来预防粉尘爆炸 ;除尘粉尘回流工艺在无粉尘沉积的情况下是安全的。  相似文献   

18.
On the basis of a systematic testwork with a number of different dusts, the explosion indices as determined within the 20 l sphere and with the ISO-VDI 1 m3 vessel have been compared. The repeatability has been assessed and since some systematic deviations appear a refined physical analysis of the explosion processes is developed. It appears in particular that the cube root law supposed to link both vessels is not verified. A striking illustration of this appears when a dust with a significant explosion severity inside the 20 l sphere is not even explosible in the larger vessel. It is strongly suggested that the ignition energy is forcing very significantly the explosion in the smaller vessel inducing several tens of Celsius degrees of preheating. It is shown also that the inner level of turbulence is decreasing very fast in the 20 l sphere during the flame development so that difficult-to-ignite mixtures would tend to burn at a lower combustion rate. It is further demonstrated that the major bias between the chambers can be explained and quantified with these elements. A correlation with the standard 1 m3 vessel and a grid of interpretation of the data is proposed.  相似文献   

19.
    
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

20.
为研究泄爆门对瓦斯爆炸特征参数的影响,并验证其泄爆效果和快速封闭性能,自制大尺寸瓦斯爆炸管道试验系统,在瓦斯体积分数为5.5%、7.5%、9.5%和11.5%的工况下进行爆炸试验,通过数据采集系统收集瓦斯爆炸特性参数,分析其变化特征和泄爆效果。结果表明:4种工况下,爆炸压力波压力峰值分别衰减了42.25%、50.54%、53.27%和52.88%;随着瓦斯体积分数的增大,爆炸压力峰值以二次函数关系衰减,平均封闭火区14 h,说明泄爆门具有显著泄爆特性和快速封闭火区的作用;温度变化特征基本一致,无论瓦斯体积分数如何变化,泄爆门对瓦斯爆炸火焰没有抑制作用;4种工况下火焰传播速度最大平均值分别为103.56、105.73、136.67和138.34 m/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号