首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
在连续流生物膜反应器中通过控制DO、pH和HRT,对低氨氮浓度废水进行了亚硝化的实验研究。结果表明,在进水氨氮浓度为35~45 mg/L,温度为34℃的情况下,当DO=1.4~1.5 mg/L,pH=8.3,HRT=6 h时,氨氮的去除率与亚硝态氮的积累率均可达到80%左右,实现了较好的氨氮降解及稳定的亚硝态氮的积累。  相似文献   

2.
以颗粒活性炭为填料,采用盐度梯度两步驯化法构建含盐水体生物滤器硝化功能,研究了生物滤器稳定后水力停留时间(hydraulic retention time,HRT)、进水氨氮负荷和CODMn/N等对反应器硝化性能的影响。结果表明,25~27℃,盐度30的含盐水体生物滤器硝化功能构建需73 d,其中淡水生物滤器硝化功能构建需28 d,淡水驯化为盐度15的生物滤器需19 d,盐度15驯化为盐度30的生物滤器需26 d;实验条件下生物活性炭填料反应器中生物量达到146~742.1 nmolP/g-BAC;调节进水氨氮浓度2 mg/L左右时,最佳HRT为1 h,氨氮去除率达到84.98%,相应的氨氧化菌和硝酸菌氧吸收速率(oxygen uptake rate,OUR)分别为2.091和1.948 mg O2/(g-BAC.h);HRT为1 h时,随着进水氨氮负荷的加大,氨氮去除率逐渐降低,当进水氨氮负荷由0.12增加到0.48 g-N/(kg-BAC.d)时,氨氮去除率由84.98%降低到41.68%,同时氨氧化菌OUR由2.091降低到0.625 mg O2/(g-BAC.h);随着CODMn/N的升高,氨氮去除率下降,CODMn/N从1~8时,氨氮去除率由84.98%降低到53.64%,CODMn去除率却逐渐增加,由40.86%增加到93.59%,异养菌OUR随着CODMn/N升高呈上升趋势,最大达到0.914 mg O2/(g-BAC.h)。  相似文献   

3.
将上流式颗粒污泥床(USB)用于反硝化和生物膜法用于自养硝化处理蔗糖配水和小区生活污水,反硝化污泥床去除有机物和硝态氮具有节省需好氧去除有机物的能耗的优势,同时好氧生物膜法硝化效率高。试验结果表明,当工艺进水的有机负荷小于2kgCOD/m3·d时,出水COD均小于60mg/L,好氧单元进水有机负荷和氨氮负荷分别小于13kgCOD/m3·d和09kgNH3N/m3·d时,出水氨氮小于5mg/L;COD/NO-3N是影响反硝化的关键因素,处理蔗糖配水时,COD/NO-3N大于5时反硝化脱氮完全,而COD/NO-3N为10时,生活污水作为电子供体仍然脱氮不完全;有机物含量过高导致好氧单元硝化效果降低,HRT是影响好氧单元硝化效率的主要因素,HRT缩短为15h时,氨氮去除率降低了85%左右;同时处理蔗糖配水和生活污水的反硝化菌活性相当。  相似文献   

4.
纳米生态基对水产养殖污水的处理效果   总被引:5,自引:1,他引:4  
采用三因子四水平的正交设计,实验研究了纳米生态基在不同温度、溶解氧和水力停留时间下对水产养殖污水的处理效果,确定了纳米生态基处理养殖污水的最佳条件。结果表明,含氨氮和亚硝氮浓度较高的模拟养殖污水用纳米生态基挂膜,所需时间约为22 d。纳米生态基对氨氮的去除效果明显,平均去除率达到93.5%。对氨氮去除率的影响程度,水力停留时间>温度>溶解氧。当温度为30℃,DO为5.43 mg/L,HRT为0.33 h时,纳米生态基对氨氮的处理能力最佳,去除率达到94.6%。纳米生态基对亚硝氮的平均去除率为69.3%。对亚硝氮去除率的影响程度,水力停留时间>溶解氧>温度。当温度为21℃,DO为6.40 mg/L,HRT为0.33 h时,纳米生态基对亚硝氮的处理能力最佳,去除率为71.5%。纳米生态基处理养殖污水的最佳条件:温度为30℃,DO为6.40 mg/L,HRT为0.33 h。  相似文献   

5.
硝态氮为惟一氮源时异养微生物增长特性   总被引:2,自引:0,他引:2  
采用SBR研究了缺氧条件下硝态氮为惟一氮源时异养微生物的增长特性。结果表明,异养微生物能利用硝态氮作为氮源进行增殖。当进水COD浓度为1 400 mg/L,硝态氮浓度为280 mg/L时,COD和硝态氮的去除率分别达到97%和99%;污泥中微生物的含氮量为8.8%,低于常规利用氨氮作为氮源的微生物;在实验条件下活性污泥的产率系数为0.30 g VSS/g COD。反硝化菌可利用硝态氮作为氮源进行细胞合成对含硝氮的废水处理具有重要意义。一方面由于无需投加氨氮降低了废水处理成本,另一方面由于污泥产率低,降低了污泥处理成本。  相似文献   

6.
针对高氨氮低碳氮比(C/N)黑臭水进行脱氮研究,通过硝化菌和反硝化菌共同作用,并在后期耦合铁碳微电解(IC-ME)强化脱氮。单因素控制变量实验表明,硝化菌和反硝化菌在30℃硝化/反硝化效果较优,平均氨氮去除率为71.62%,硝态氮去除率可达到67.52%;在溶解氧(DO)为3 mg/L时硝化效果较好,平均氨氮去除率达到了70.08%;在后期投加150 g/L铁碳填料时,反硝化效果最好,2#和3#反应器硝态氮去除率最高分别提高到了81.78%和91.17%。长时间运行反应器后,氨氮去除负荷达到0.193 kg/(m3·d),化学需氧量(COD)去除负荷达到1.786 kg/(m3·d)。单独的微生物菌种针对高氨氮低C/N黑臭水脱氮还有一定的局限性,通过后期耦合IC-ME,脱氮效率明显提升,总氮(TN)去除率可从45.65%提升到58.91%。  相似文献   

7.
以处理水产养殖水体中的含氮化合物为目的,采用气提反应器,建立以聚己内酯(polycaprolactone,PCL)为碳源和生物膜载体的同时硝化反硝化(simultaneous nitrification and denitrification,SND)系统(PCL-SND),研究其启动过程及脱氮效果以及水力停留时间(hydraulic retention time,HRT)对PCL-SND系统脱氮效果的影响。结果表明,在PCL填充率为10%,HRT为24 h,进水氨氮(NH+4-N)浓度为10 mg/L,硝态氮(NO-3-N)浓度为50 mg/L的条件下,系统运行45 d达到稳定状态,NH+4-N和TN的去除率分别为(76.55±0.98)%和(56.85±2.21)%。HRT对PCL-SND系统脱氮效果的研究表明,一定范围内,TN去除率随着HRT的减小而下降,出水NO-3-N浓度随着HRT的减小而升高,当HRT8 h,NH+4-N去除率基本稳定(85%~89%),HRT为24 h时,脱氮效果最好,TN和NH+4-N去除率分别为(68.56±1.64)%和(87.75±2.78)%,出水NO-3-N浓度(15.72±1.46)mg/L。p H和总碱度均随HRT的减小而下降,生物量却随HRT的减小而增大。  相似文献   

8.
采用SBBR在溶解氧1.0 mg/L条件下考察了不同温度对实际炼油催化剂废水脱氮系统效能的影响.结果表明,SBBR容积负荷及同步硝化反硝化(SND)三氮去除率与进水氨氮浓度正相关.不同进水浓度下,反应器SND三氮去除率最高可达40%左右.33、30及28℃条件下,反应器亚硝积累率均可稳定保持在90%以上.不同温度下短程硝化反硝化pH值及ORP变化趋势基本一致,结合在线监控pH值及ORP变化规律调控反应时间,最大限度保证短程硝化的稳定性.  相似文献   

9.
污水中往往同时含有较高浓度的有机物和氨氮,研究较高有机物浓度下氨氮的好氧生物硝化,以为工程应用提供实践和理论依据。考察了COD浓度为1 200 mg·L-1,好氧活性污泥处理氨氮废水过程中COD、NH4+-N的去除情况,硝态氮、亚硝态氮的生成情况。在整个驯化阶段,氨氮的最高去除率达到86.42%,COD最高去除率达到85.40%,同时亚硝态氮的最大生成量为15.97 mg·L-1,硝态氮的最高生成量为5.14 mg·L-1,且8 h的短期实验显示,COD、NH4+-N的去除可以同步进行。  相似文献   

10.
为了在低温13~14%下取得较好的硝化效果,分3个温度阶段25℃,16~17℃,13—14℃对活性污泥进行了驯化培养,研究了进水氨氮浓度和混合液COD对硝化污泥的影响。实验结果表明,硝化污泥经过驯化培养后,氨氮去除率可达80%以上,且在DO浓度为2ing/L,pH为6.7~7.5,进水氨氮为300mg/L,混合液COD为80mg/L条件下,硝化污泥能取得较快的增长,氨氮平均去除率可达89%。  相似文献   

11.
固定化硝化细菌去除生活污水中的氨氮   总被引:2,自引:0,他引:2  
以聚乙烯醇-海藻酸钠作为包埋载体固定硝化细菌,制备固定小球,对生活污水中的氨氮去除效果进行研究。采用平行实验考察了载体不同包菌量、载体与污水量比、活化时间、温度、DO以及载体循环次数对氨氮去除率的影响。结果表明,用包埋载体处理污水的氨氮和COD去除率明显高于传统活性污泥,且得出最佳反应条件:包埋载体的最佳活化时间为20 h,最适温度为25℃,最佳DO为3~4 mg/L。投加包埋载体比传统活性污泥法对氨氮去除效果和COD去除能力具有强化作用,投加20%的包埋载体时,反应器出水氨氮去除率提高了20%,菌体与载体比值小于1:2.5时氨氮去除率超过90.12%,固定化包埋载体去除氨氮过程比较符合一级动力学模型。  相似文献   

12.
为优化短程硝化反硝化工艺对模拟城市污水的脱氮处理性能,通过包埋固定化技术分别制得短程硝化、反硝化填料,形成连续流脱氮工艺。结果表明,短程硝化填料活性恢复后的氨氧化速率(AOR)可达39.83 mg∙(L∙h)−1,亚硝酸盐积累率(NAR)稳定在96.60%。采用响应曲面法考察了短程硝化过程中的DO、HRT和填充率等因素对氨氮去除率(ARR)和NAR的影响,并建立了二次回归模型,通过模型预测的最佳运行工况为:HRT为3.48 h,DO为3.64 mg∙L−1,填充率为20%。此时,后置反硝化包埋填料,当平均C/N为2.82时,总氮出水平均质量浓度为2.29 mg·L−1,去除率稳定在94.27%,说明该工艺对城市污水具有良好的脱氮性能。高通量测序结果表明,短程硝化和反硝化包埋填料内部的功能菌均有大量增殖,并始终保持着优势地位。  相似文献   

13.
针对江苏某合成氨工业氨氮废水水质特点,建立5 m3/d缺氧-曝气生物流化床中试系统.在进水氨氮浓度为13~170 mg/L、温度为8~32℃的条件下,中试系统出水氨氮去除率维持在65%~100%之间,平均氨氮去除率85%,亚硝酸盐积累率维持在40%~82%,系统出水氨氮指标达到《合成氨工业水污染物排放标准》(GB 13458-2013)中的直接排放标准.  相似文献   

14.
为了探讨固定化包埋填料高氨氮负荷下短程硝化的稳定运行研究,以固定化技术包埋一定量硝化菌填料为载体,并利用序批次反应器进行处理人工配置的氨氮废水实验,该实验研究了实现短程硝化影响因素DO、有机物的控制范围,驯化期间,分别将温度、pH值、DO控制在(31±1)℃、7.8~8.2、1.8~2.0 mg·L-1范围内,进水有机物浓度始终保持在50 mg·L-1以下,体积填充率为15%,采用高游离氨(3.03~14.18 mg·L-1)对NOB产生抑制作用,使活性填料中的AOB成为优势菌群,通过历时55 d的培养实现了该填料短程硝化的启动及稳定运行,结果表明,进水氨氮浓度保持200 mg·L-1左右,氨氮去除速率高达28.29 mg NH4+-N·(L·h)-1的同时,氨氮的去除率>97%,亚硝酸盐积累NO2--N/NOx--N>85%,实验同时还考察了活性填料的抗冲击负荷能力与单个周期内短程硝化运行特征。  相似文献   

15.
针对进水氨氮浓度变化会影响CANON颗粒污泥功能微生物间的协同导致系统不稳定的问题,通过接种常温下贮存2个月的自养颗粒污泥,并采用3种调控策略(维持HRT不变,快速提升氨氮浓度(R1);维持HRT不变,逐级提升氨氮浓度(R2);逐级提升进水氨氮浓度同时调整HRT,以125 mg·L−1为进水氨氮增幅(R3)),分别考察各种调控策略对系统适应275 mg·L−1和400 mg·L-1氨氮浓度的效能影响,探讨调控策略与污泥性能的关系及游离氨(FA)、溶解氧(DO)的影响。结果表明,污泥性能提升期,负荷变化最为平稳的策略R3率先适应进水氨氮浓度的提升,仅44 d内总氮去除负荷可达到3.5 kg·(m3·d)−1;污泥性能成熟期,快速提升负荷的策略R1可缩短适应时间至25 d,总氮去除率稳定在80%以上,去除负荷达到5.3 kg·(m3·d)−1。FA会影响功能微生物活性,策略R1在污泥性能提升期,FA浓度高达16.6~26.7 mg·L−1,一定程度上抑制了好氧氨氧化菌(AOB)和厌氧氨氧化菌(AMX)的活性,导致系统适应期延长。在污泥适应高氨氮负荷过程中,比氨氧化速率(SAOR)和比总氮去除速率(SNRR)逐渐提高,污泥浓度和颗粒粒径逐渐增大。f值(Δ$ {\rm{NO}}_3^{-}$-N/ΔTN)可作为DO调节的重要依据,DO与氨氮去除负荷呈良好的正相关性。  相似文献   

16.
采用固定化微生物深度处理垃圾渗滤液,研究水力停留时间(HRT)、溶解氧(DO)和进水pH对系统脱氮效果的影响。通过对厌氧出水和好氧出水的脱氮效果比较,探讨固定化微生物构筑物的合理位置。结果表明:固定化微生物处理厌氧出水时,最佳HRT为72 h,最佳DO为5 mg·L-1,最佳进水pH为7.5~8.5;处理好氧出水时,最佳HRT为84 h,最佳DO为5 mg·L-1,最佳进水pH为7.5~8.5;处理厌氧出水和好氧出水时氨氮平均去除率分别达到63.8%和92.6%,将固定化微生物构筑物单元设置在好氧处理之后更合理,可以充分发挥固定化微生物处理渗滤液脱氮方面的独特优势,切实解决渗滤液高效脱氮的问题。  相似文献   

17.
针对厌氧氨氧化工艺需要提供充足的亚硝酸盐氮为电子受体的问题,利用培养基对SBR中具有一定短程硝化功能的污泥进行富集培养,得到氨氧化菌和亚硝酸盐氧化菌的数量之比为104︰1,并研究了工艺条件对短程硝化的影响,结果表明,适合氨氧化菌生长的最佳温度为30℃、pH为7.5、nHCO-3/nNH+4-N值为1。以适合氨氧化菌生长的最佳环境条件优化SBR,在进水氨氮浓度为250 mg/L时,氨氮的转化率达到90%以上,亚硝酸盐氮积累率维持在85%以上,反应器中氨氧化菌与亚硝酸盐氧化菌的数量之比为103∶1,亚硝酸盐的高效积累为厌氧氨氧化工艺处理高氨废水的过程提供了稳定的电子受体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号