首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 52 毫秒
1.
亚甲基蓝在污泥活性炭上的吸附   总被引:3,自引:2,他引:3  
以剩余污泥为原料,氯化锌为活化剂制备污泥活性炭。研究了初始pH值、吸附温度及离子强度对污泥活性炭吸附亚甲基蓝效果的影响。采用高分辨电子扫描电镜(SEM)和氮吸脱附曲线对污泥活性炭进行了表征。结果表明,随着pH值的升高,吸附量增大,碱性条件下最好。在15~55℃的范围内,亚甲基蓝的吸附量先增加后降低,温度为35℃时吸附量达到最大值。加入氯化钠后的污泥活性炭的吸附能力变弱,但随着离子强度的增大,变弱的强度减少。污泥活性炭以中孔为主和污泥活性炭具有不规则结构,预示着污泥活性炭较高的吸附能力。污泥活性炭对亚甲基蓝的吸附符合Lang-muir等温吸附方程。污泥壳活性炭对亚甲基蓝的吸附符合二级反应动力学方程反应特征。  相似文献   

2.
以城市污水厂脱水剩余污泥为原材料,采用硫酸活化法制备活化剩余污泥,讨论了溶液初始pH、铅离子的浓度、接触时间和吸附剂投加量等因素对处理含铅废水效能影响,探讨了其吸附动力学特征.结果表明,活化剩余污泥对铅离子有较好吸附效果,10 min内吸附率达到75%,45 min内吸附基本达到平衡,在偏酸性或中性条件下,吸附容量随着初始pH增大而增大.采用4种动力学方程(准一级吸附动力学方程、准二级吸附动力学方程、颗粒扩散吸附动力学方程、Elovich动力学方程)对其吸附数据进行吸附动力学拟合,通过分析得出,准二级吸附动力学方程能较好地反映该吸附过程,其相关系数R2均达到0.999以上.  相似文献   

3.
以印染活性污泥为原料,氯化锌为活化剂制备污泥活性炭,并将其用于吸附水中的亚甲基蓝。通过扫描电镜和X射线粉末衍射仪对污泥活性炭进行表征分析,结果表明,污泥活性炭以中孔为主,该孔隙结构更适合于对大分子染料的吸附。详细研究了锯末添加量、初始pH、吸附温度及初始浓度对污泥活性炭吸附亚甲基蓝的影响。结果表明,1%锯末的添加有助于提高活性炭的吸附能力,而过量的锯末添加会影响活性炭的孔隙结构。活性炭对亚甲基蓝的吸附容量随pH的增加而减小,酸性条件较碱性条件更利于对亚甲基蓝的吸附去除。在5~45 ℃的范围内,亚甲基蓝吸附量随温度升高而增加,温度为45 ℃时达到最大吸附量。从热力学角度研究了污泥活性炭对亚甲基蓝溶液的吸附行为,热力学研究表明,污泥活性炭对亚甲基蓝的吸附符合Langmuir 等温吸附方程。研究结果可为印染污泥的资源化利用提供一定的技术支持。  相似文献   

4.
污泥活性炭对次甲基蓝废水的吸附   总被引:1,自引:0,他引:1  
立足于污泥的资源化,利用化学活化法制得的污泥基活性炭,处理次甲基蓝染料废水.考察了污泥活性炭的粒径以及染料废水的pH值对染料脱色效果以及活性炭的吸附量的影响,并对吸附过程进行等温吸附线和吸附动力学分析.结果表明,在本研究的范围内,污泥活性炭的粒径越小、染料废水的pH值越高,则污泥活性炭对染料废水的吸附效果越好.当粒径在200目以上时,去除率及吸附量分别为88.2%和136.7 mg/g;当pH值为11时,去除率和吸附量分别为90.4%和91.9 mg/g.污泥活性炭对次甲基蓝染料的吸附脱除符合Langmuir吸附等温线和Lagergren准二级动力学方程.  相似文献   

5.
昌晶  王丽萍  田红景 《环境工程学报》2016,10(10):5373-5379
以栗苞炭化料(C-BC)为原料,以NaOH为活化剂制备栗苞活化生物质炭(Na-BC),研究其对水中亚甲基蓝的吸附行为。选取炭碱比、活化温度和活化时间为影响因素,通过正交试验确定了最佳活化工艺,即炭碱比为1:4,活化温度为800℃,活化时间为30 min,此时Na-BC的最大吸附量为609.38 mg·g-1。对最优条件下制备的生物质炭进行SEM、BET等表征,比表面积达1 563.78 m2·g-1,总孔容达1.452 cm3·g-1。吸附实验结果显示,吸附反应能较好用Langmuir模型和准二级动力学方程模型进行模拟,Na-BC对亚甲基蓝的吸附为自发吸热反应。通过热法与碱法再生处理饱和吸附生物质炭,再生后的Na-BC对亚甲基蓝具有较好的吸附能力。  相似文献   

6.
以花生壳为原料,氯化锌为活化剂制备花生壳活性炭,采用高分辨电子扫描电镜(SEM)和氮吸脱附曲线对花生壳活性炭进行了表征.从热力学和动力学的角度,研究了花生壳活性炭对亚甲基蓝溶液的吸附行为.热力学研究表明,花生壳活性炭对亚甲基蓝的吸附符合Langmuir等温吸附方程,该吸附是自发吸热过程,吸附自由能为-52.4017~-95.1765 kJ/mol,吸附熵变为214 J/(mol·K),吸附焓变为57.49796 kJ/mol.动力学研究表明,花生壳活性炭对亚甲基蓝的吸附符合二级反应动力学方程反应特征.  相似文献   

7.
KOH活化花生壳生物质炭对亚甲基蓝吸附性能研究   总被引:2,自引:0,他引:2  
以花生壳生物质炭(P-BC)为原料,KOH为活化剂,采用化学活化法制得活化生物质炭(K-BC),通过考察对亚甲基蓝的吸附性能,研究了花生壳生物质炭的最佳活化条件,并利用N2吸附-脱附实验、SEM等对最佳活化条件下的生物质炭进行表征.结果表明,K-BC活化的最佳条件为碱炭比为1.5:1,活化温度为800℃,活化时间为90 min,此时K-BC的比表面积达到597.93 m2/g,总孔容达到0.76 cm3/g.并考察了亚甲基蓝初始浓度、pH等对K-BC吸附亚甲基蓝的影响,随着初始浓度的增加,吸附平衡时间显著延长,亚甲基蓝去除率显著降低;当pH=6时,K-BC对亚甲基蓝的吸附量最大;K-BC对亚甲基蓝的吸附动力学曲线符合伪二阶动力学模型,吸附平衡时K-BC对亚甲基蓝的吸附能力为80~149.95 mg/g.  相似文献   

8.
利用低分子量富G海藻酸片段(LG-HA)与六亚甲基二异氰酸酯(HDI)之间的交联作用,制备了富G海藻酸钠聚氨酯泡沫(PF-SA)。采用红外光谱和扫描电子显微镜对PF-SA结构进行了表征,并系统研究了其对水相中亚甲基蓝(MB)的吸附性能。结果表明,PF-SA具有三维网络结构,吸附时间、溶液的pH值、吸附温度、MB溶液的初始浓度等因素都会对吸附效果造成影响。在优化条件下,PF-SA对MB初始浓度低于2 000 mg/L的溶液,去除率可达99%以上。对于更高浓度的MB溶液,吸附量可达到1 000 mg/g。准二级吸附动力学模型更能真实地反映吸附过程。吸附热力学函数的计算结果表明,吸附是一个自发的吸热过程。  相似文献   

9.
黄麻纤维活性炭对亚甲基蓝和甲基橙吸附动力学   总被引:1,自引:0,他引:1  
以黄麻纤维为原料,采用磷酸活化法制备活性炭。研究黄麻纤维活性炭对亚甲基蓝和甲基橙2种染料的吸附行为。结果表明,采用磷酸制备的活性炭,由于表面含有羧基和含磷官能团等酸性基团,能够促进活性炭对亚甲基蓝的吸附;黄麻纤维活性炭对2种染料的平衡吸附量、初始吸附速率均随着初始浓度的增加而升高;相同条件下,黄麻纤维活性炭对亚甲基蓝的平衡吸附量大于甲基橙;黄麻纤维活性炭对两种染料的吸附行为更符合准二级动力学模型。  相似文献   

10.
为提高对亚甲基蓝的去除效果,采用热解+NaOH浸泡方法制备了改性木屑,用SEM研究了改性对木屑表面结构的影响,并以该改性木屑为吸附剂,进行了从水溶液中吸附亚甲基蓝的性能研究。研究结果显示,改性木屑表面光滑,并出现多发熔孔。常温下,改性木屑对亚甲基蓝的吸附等温线符合Langmuir方程,最大吸附量322.58 mg/g,是原始木屑的10倍,是活性炭的3倍,改性效果显著;对浓度为200 mg/L、pH值为7的亚甲基蓝溶液,改性木屑投加量为0.8 g/L时,去除率达到了99.01%,去除效果理想。吸附动力学符合伪二级速率方程。  相似文献   

11.
通过批次实验考察了活性污泥对金霉素(chlortetracycline,CTC)的吸附特性,研究了包括吸附平衡时间、污泥浓度(MLSS)、温度以及pH值对吸附的影响。结果表明,CTC在活性污泥上的吸附是一个快速的过程,5 min可达到平衡吸附量的90%以上,6 h达到吸附平衡;CTC的总去除率随着MLSS浓度的增加而增大,而污泥单位吸附量却随之减少,当CTC初始浓度为500 μg/L,MLSS浓度从1 000 mg/L增至8 000 mg/L时,吸附平衡时CTC的总去除率从30.97%上升至60.42%,而污泥单位吸附量则从151 326.70 μg/kg下降至37 530.98 μg/kg;在10、20、30℃条件下,吸附较好地符合Freundlich等温吸附模型和线性分配吸附模型,Kd值依次为190.93、162.32和121.08 L/kg;热力学数据表明,CTC在污泥上的吸附为放热过程,低温有利于吸附的进行;当pH值介于3~11之间时,CTC在污泥上的吸附量随着pH值的增加而减少。  相似文献   

12.
以剩余污泥为吸附剂,研究其对混合染料废水中活性黑KN-B和酸性大红G的吸附行为,考察了吸附动力学、吸附等温线、离子浓度、废水pH,以及染料质量比对吸附的影响。结果表明,污泥对RB KN-B和AR G的混合染料吸附迅速,时间可以控制在30 min;RB KN-B的吸附量是AR G的2.4~2.5倍;其吸附过程可以用假二级动力学方程进行描述和预测。Langmuir方程可以较好地描述污泥对RB KN-B和AR G的吸附,而混合染料MD的吸附更符合Freundlich方程。污泥对RB KN-B的吸附量在pH<11范围内比较稳定;AR G则在pH ≤ 2时吸附量较高,pH 2~4之间吸附量急剧下降,pH 4~11之间吸附量相对稳定;混合染料中染料所占比例对单个染料去除率影响较小,但对混合染料总的去除率影响较大。  相似文献   

13.
城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附   总被引:1,自引:0,他引:1  
热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。  相似文献   

14.
以剩余污泥为吸附剂,研究其对模拟废水中酸性大红G的吸附条件及吸附机理。结果表明,剩余污泥对酸性大红G的吸附是一个快速过程,吸附时间可控制在30 min;其吸附过程同时受液膜扩散和颗粒内扩散的影响,可以用假二级动力学模型进行描述和预测;Freundlich方程可以较好地描述剩余污泥对酸性大红G的吸附行为。污泥未调pH时,对pH<2的溶液中酸性大红G的吸附性能良好;污泥pH为1时,对实验范围(pH<11)溶液中的酸性大红G均可有效吸附;污泥投加量增加,酸性大红G去除率升高,但污泥对酸性大红G的吸附量下降。  相似文献   

15.
用剩余污泥对活性黑KN-B进行吸附研究,考察了pH、吸附时间、温度、盐类和污泥量等对活性黑KN-B吸附的影响.结果表明,剩余污泥对活性黑KN-B的吸附是一个快速过程,吸附时间可控制在30 min;其吸附过程可以用准二级动力学模型进行描述和预测;温度对污泥吸附活性黑KN-B产生的影响较小;其吸附等温线,25℃、35℃时与Freundlich方程拟合良好,45℃时则可以由Langmuir方程更好地描述.未调pH的剩余污泥,对pH≤2的废水中活性黑KN-B吸附性能良好;剩余污泥pH为1时,对pH<12的废水中活性黑KN-B均可有效吸附;氯化钠浓度低于500 mg/L或氯化钠和硫酸钠的混合盐浓度低于100 mg/L时,有利于吸附;氯化钠浓度高于500 mg/L、混合盐浓度高于100 mg/L或单独加入硫酸钠后,随盐浓度的增加,吸附量呈下降趋势.  相似文献   

16.
以城市污水处理厂的脱水污泥为原料,用ZnCl2活化法制备污泥活性炭,并研究其对水中酸性红G的吸附、脱附行为。选取活化剂浓度、固液比、活化温度及活化时间等因素,通过正交实验确定了最佳工艺,即ZnCl2浓度30%,固液比1:2,碳化温度500℃,碳化时间1.5 h。吸附实验结果表明,该污泥活性炭对水中酸性红G的吸附量随着温度升高而增加,在15、25和35℃条件下的最大吸附量分别为153.6、165.6和180.4 mg/g,且吸附等温线能较好用Langmuir方程进行模拟。酸性红G在污泥活性炭上的吸附动力学符合准二级反应动力学模型。污泥活性炭对酸性红G的吸附量随着溶液pH的增大而减小,污泥活性炭的最佳投加量为0.26 g/L。吸附饱和的污泥活性炭可通过碱处理和热处理方法进行脱附,脱附后的吸附剂对酸性红G仍具有很强吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号