首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以生物铁泥和普通活性污泥为对象,在不同碳源及兼氧/厌氧条件下采用实验室恒温培养的方法考察了不同活性污泥的Fe(Ⅲ)还原性能。研究结果表明,不同活性污泥Fe(Ⅲ)还原能力相差较大,生物铁泥的Fe(Ⅲ)还原性能明显优于普通活性污泥,在兼性厌氧与严格厌氧条件下,分别是普通活性污泥的1.87倍和1.76倍;碳源对生物铁泥的Fe(Ⅲ)还原影响较小,而对普通活性污泥的Fe(Ⅲ)还原过程呈现出较明显的负影响;在实验控制的兼氧/厌氧条件下,2种活性污泥厌氧条件下Fe(Ⅲ)还原能力均大于兼氧条件。为活性污泥Fe(Ⅲ)还原过程的工程实际应用提供了理论依据。  相似文献   

2.
微生物的异化Fe(Ⅲ)还原是一种能够利用Fe(Ⅲ)作为末端电子受体在无氧条件下氧化有机物的产能过程。结合这一特性,考察了在兼性厌氧/严格厌氧条件下Fe0钝化膜作为Fe(Ⅲ)源时的生物还原能力以及对N、P等营养元素的去除效果。结果表明,严格厌氧条件下微生物异化Fe(Ⅲ)还原能力较好,富集培养至7 d,累计Fe(Ⅱ)浓度达到最大,最大产生速率为98.69 mg/(L·d),同时TP去除率高达97.1%以上。而体系对NH4+-N、TN的去除相对滞后,培养至13 d,去除率开始增大,最终分别达到86.6%和76.1%。这为装填有海绵铁+聚氨酯泡沫载体的SBBR中填料的原位再生问题提供了解决思路。  相似文献   

3.
铁-苹果酸配合物对高价铬的光还原处理   总被引:1,自引:0,他引:1  
研究了Fe(Ⅲ)-苹果酸配合物体系对Cr(Ⅵ)的光还原处理,考察了光源、初始pH值、Fe(Ⅲ)、苹果酸盐和Cr(Ⅵ)初始浓度等因素对Cr(Ⅵ)光还原效率的影响。结果表明:光照条件下,铁-苹果酸配合物能有效实现对六价铬的光还原。pH=3时Cr(Ⅵ)的光还原处理效果最佳;Fe(Ⅲ)和苹果酸盐初始浓度的增加可提高Cr(Ⅵ)的光还原效率;光还原的初始速率随各组分浓度的增大而增大,Fe(Ⅲ)浓度是影响反应速率的主要因素;Fe(Ⅲ)-苹果酸盐配合物光解产生的Fe(Ⅱ)是Cr(Ⅵ)的主要还原剂。  相似文献   

4.
陈建  徐林 《环境工程学报》2013,7(1):191-195
为开发含Cr(Ⅵ)废水处理工艺提供必要资料,对不同条件下Fe(Ⅲ)催化有机酸光化学还原Cr(Ⅵ)进行了比较研究.研究结果表明,Cr(Ⅵ)的还原不仅受pH、Fe(Ⅲ)或有机酸的起始浓度以及共存阳离子的影响,而且还与有机酸种类有关.低pH的酸性条件有利于cr(Ⅵ)的光化学还原,在pH 3.0条件下经3h后的还原率达89.9%,在pH 5.0经3h后其还原率为37.3%.Fe(Ⅲ)或有机酸起始浓度增高会促进Cr(Ⅵ)的还原,在pH3.0和Fe(Ⅲ)浓度高于Cr(Ⅵ)浓度条件下导致在3h后Cr(Ⅵ)的光化学还原率达100%.共存Al(Ⅲ)或Cu(Ⅱ)会抑制Cr(Ⅵ)的光化学还原.由Fe(Ⅲ)催化3种有机酸对Cr(Ⅵ)的光化学还原作用大小次序为:酒石酸>柠檬酸>苹果酸.还对不同条件影响Cr(Ⅵ)的光化学还原可能机制作了讨论.  相似文献   

5.
城市生活垃圾经过焚烧后的炉渣具有广阔的利用前景,是一种较为理想的磷聚填料。研究了磷初始浓度、pH、炉渣粒径以及反应温度对炉渣除磷效果的影响。结果表明:(1)炉渣对KH_2PO_4溶液中的磷具有较好的去除效果,最佳反应时间为3.0h;(2)磷脱除量随磷初始浓度的增加而增加,而磷的去除率呈降低趋势;(3)磷脱除量随pH的增加呈先降低后增加趋势,酸性条件下炉渣对磷具有较高的去除效果;炉渣颗粒越小,对磷的吸附去除效果越好;(4)炉渣对磷的吸附符合Langmuir和Freundlich等温吸附方程,相关系数均达显著水平,且Langmuir等温吸附方程拟合效果更优;(5)炉渣中的磷形态主要为钙结合态磷(包括Ca_2-P、Ca_8-P、Ca_(10)-P)、铝结合态磷(Al-P)和铁结合态磷(Fe-P),其中以Ca_(10)-P形态最多(78.96%)。  相似文献   

6.
在湿法烟气脱硝中,Fe(Ⅱ)EDTA是一种常用的螯合剂,对NO有良好的络合吸收能力,但是Fe(Ⅱ)EDTA容易被O2氧化成对NO无络合能力的Fe(Ⅲ)EDTA。因此,选择合适的还原剂实现Fe(Ⅲ)EDTA的高效还原是络合脱硝的关键技术之一。比较了铁碳(Fe/AC)和铁粉(Fe)在不同搅拌速度下对Fe(Ⅲ)EDTA的还原,系统探讨了铁碳质量比、O2浓度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、pH值和Fe(Ⅲ)EDTA初始浓度对铁碳还原Fe(Ⅲ)EDTA的影响,考察了Fe/AC投加前后NO吸收效率的变化,同时通过BET、XRD表征技术对铁碳材料进行了分析。结果表明:Fe/AC能很好地再生Fe(Ⅱ)EDTA,从而提高NO吸收效率。提高搅拌速度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、Fe(Ⅲ)EDTA初始浓度,Fe(Ⅲ)EDTA的还原速率会相应增大;O2浓度及pH增大会降低Fe(Ⅲ)EDTA的还原速率。表征结果表明,铁碳表面形成的氢氧化物为γ-Fe OOH。  相似文献   

7.
湖泊底泥磷释放及磷形态变化   总被引:2,自引:0,他引:2  
为研究底泥中内源性磷释放对城市景观水体富营养化的影响,以西安市曲江南湖为对象,采用底泥磷形态标准测试方法(SMT)分析了磷的赋存形态,通过模拟实验探究了在不同环境条件(温度、pH和溶解氧)下磷形态变化的特征。结果表明:温度升高促进内源磷的释放,在夏季加剧水体富营养化程度;碱性条件有利于磷的释放,增大补给水源可减少底泥释磷量;厌氧环境下底泥释磷量是好氧时的3.96倍;Al-P和Ca-P较稳定,在酸性条件下会加速其溶解;NH+4-P、Fe-P和OrgP受溶解氧、pH和温度影响较大,其吸附与释放能力有明显的差异。  相似文献   

8.
采用还原剂抗坏血酸(AA)强化Fe(Ⅲ)催化过碳酸钠(SPC)体系处理水溶液中的乙苯(EB),考察SPC浓度、Fe(Ⅲ)浓度、AA浓度、溶液初始pH及无机阴离子浓度等对EB降解效果的影响,探讨AA在SPC/Fe(Ⅲ)体系中的作用,确定EB降解过程中起主导作用的自由基。结果表明,AA的存在可促进Fe(Ⅱ)/Fe(Ⅲ)循环,明显提高EB的降解效率,AA与Fe(Ⅲ)最佳摩尔比为1∶2。SPC/AA/Fe(Ⅲ)体系中EB的降解随溶液初始pH的升高而降低,溶液中存在的HCO_3~-会抑制EB的降解。化学探针实验、电子顺磁共振检测及自由基清扫实验表明,该体系中有·OH和O_2~-·产生,·OH对EB的降解起主要作用。  相似文献   

9.
紫外光(UV)照射下,利用Fe(Ⅲ)-富马酸盐体系对黄连素(berberine)的降解反应进行研究。探讨Fe(Ⅲ)、富马酸盐(fumarate)和黄连素的初始浓度及溶液pH值对黄连素降解率的影响,并对黄连素的降解过程进行了动力学分析和机理分析。结果表明,在紫外光照射下,Fe(Ⅲ)-富马酸盐体系对黄连素有较好的降解效果。当Fe(Ⅲ)和富马酸钠初始浓度分别为25μmol/L和250μmol/L,溶液pH值为3.0时,紫外光照75 min后黄连素降解率接近91%。在pH 2.0~6.0范围内,pH值越大黄连素的降解率越低;Fe(Ⅲ)和富马酸盐初始浓度的增大能促进黄连素的降解;而随着黄连素初始浓度的增大,其降解率逐渐降低。动力学分析表明,黄连素光降解过程符合一级动力学。利用异丙醇和硫脲猝灭法证明Fe(Ⅲ)-富马酸盐体系在光反应过程中产生了羟基自由基和超氧负离子自由基。通过紫外光谱、红外光谱、TOC检测和GC-MS分析表明,在紫外光照射下黄连素在Fe(Ⅲ)-富马酸盐体系中结构被破坏,降解为小分子物质。  相似文献   

10.
初始pH值对磷酸盐还原除磷的影响研究   总被引:2,自引:0,他引:2  
以超高盐(盐度7%,以NaCI计)高磷榨菜废水为研究对象,考察了初始pH值对磷酸盐还原进程的影响。实验结果表明,初始pH值对磷酸盐还原除磷效能影响显著。初始pH为8时,磷酸盐还原除磷率达到最高,平均值为65.45%。同时,初始pH值还会影响污泥中活性磷的形成以及基体对磷化氢的吸附。此外,偏碱性有利于磷形态转化,且BD-P(主要是一些可溶性的、还原性强的、带有Fe-P化合物的集合)含量的高低调控着生物膜内间隙水中溶解态可反应性磷(DRP)和可还原水溶态磷(RSP)含量,最终决定着磷酸盐还原进程。随着初始pH值的升高,污泥对磷化氢的吸附能力降低导致污泥中结合态磷化氢(MBP)含量不断减少。  相似文献   

11.
以日光灯和金属卤化物灯为主要光源,以Fe(Ⅲ)/丙酮酸钠体系光化学过程中产生的Fe(Ⅱ)和·OH为主要检测对象,探讨了Fe(Ⅲ)/丙酮酸钠体系光解过程中生成的Fe(Ⅱ)和·OH的浓度变化.结果表明,Fe(Ⅲ)/丙酮酸钠体系的光解过程不仅能产生Fe(Ⅱ)和·OH;在丙酮酸钠过量的情况下,光解过程还存在着Fe(Ⅲ)/Fe (Ⅱ)的循环;Fe(Ⅱ)浓度和·OH累积浓度均在pH 3.00时最大;体系的光化学过程中会伴随pH的升高;初始Fe(Ⅲ)浓度和初始丙酮酸钠浓度的提高都有利于Fe(Ⅱ)浓度和·OH累积浓度的提高.  相似文献   

12.
微生物的异化Fe(Ⅲ)还原是一种能够利用Fe(III)作为末端电子受体在无氧条件下氧化有机物的产能过程。结合这一特性,考察了在兼性厌氧/严格厌氧条件下Fe^0钝化膜作为Fe(111)源时的生物还原能力以及对N、P等营养元素的去除效果。结果表明,严格厌氧条件下微生物异化Fe(Ⅲ)还原能力较好,富集培养至7d,累计Fe(II)浓度达到最大,最大产生速率为98.69mg/(L·d),同时TP去除率高达97.1%以上。而体系对NH4-N、TN的去除相对滞后,培养至13d,去除率开始增大,最终分别达到86.6%和76.1%。这为装填有海绵铁+聚氨酯泡沫载体的SBBR中填料的原位再生问题提供了解决思路。  相似文献   

13.
考察了pH值对"Fe0-厌氧微生物"体系降解2,4,6,-三氯酚(2,4,6-TCP)效果的影响,结果表明:pH值是影响"Fe0-厌氧微生物"体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH 7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe0腐蚀。  相似文献   

14.
Fe(Ⅲ)-酒石酸盐配合物对双酚A模拟废水的光处理   总被引:2,自引:1,他引:1  
主要研究了卤灯光照下,Fe(Ⅲ)-酒石酸盐配合物体系对双酚A(BPA)的光化学降解,考查了光源、初始pH值、各反应物初始浓度等因素对双酚A光降解的影响。结果表明:卤灯或太阳光照射下,BPA在Fe(Ⅲ)-酒石酸盐配合物体系中能够有效地实现光降解;光强从8.8×104Lux增加到1.2×105Lux,BPA降解率从68.9%提高到92.8%;BPA的降解率及Fe(Ⅲ)-酒石酸盐配合物光解过程中产生的.OH浓度均随pH增大而减小;Fe(Ⅲ)-酒石酸盐配合物光氧化BPA过程中溶液的pH逐渐升高;过量的酒石酸盐有利于Fe(Ⅲ)/Fe(Ⅱ)的循环进行。  相似文献   

15.
使用EDDS(乙二胺二琥珀酸)螯合Fe(Ⅲ),在光照过程中活化过硫酸盐/亚硫酸盐产生硫酸根自由基,并用于处理水体中的染料橙黄Ⅱ,考察过硫酸盐/亚硫酸盐初始浓度,Fe(Ⅲ)-EDDS初始浓度以及溶液初始pH对橙黄Ⅱ降解效果的影响,并获得处理效果较好的优化体系。结果表明,Na_2SO_3-Fe(Ⅲ)-EDDS体系中,[Na_2SO_3]=5 mmol·L~(-1),[Fe(Ⅲ)-EDDS]=0.05 mmol·L~(-1),pH=3.0时,60 min内橙黄Ⅱ降解效率达98%;Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,[Na_2S_2O_8]=10 mmol·L~(-1),[Fe(Ⅲ)-EDDS]=0.50 mmol·L~(-1),pH=7.0时,120 min内橙黄Ⅱ降解效率达99%。两个体系中,Fe(Ⅲ)-EDDS均存在最佳浓度,增大或减小均导致效率降低。Na_2SO_3-Fe(Ⅲ)-EDDS体系中,溶液初始pH越大,橙黄Ⅱ降解效率越低。Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,pH高于或低于7.0时橙黄Ⅱ降解效率均降低。Na_2SO_3-Fe(Ⅲ)-EDDS体系中,亚硫酸钠浓度越大橙黄Ⅱ降解效率越高。Na_2S_2O_8-Fe(Ⅲ)-EDDS体系中,过硫酸钠存在最佳浓度,增大或减小均导致降解效率降低。  相似文献   

16.
以芦苇秸秆生物炭为基体,制备了磁性水滑石/生物炭复合材料(Fe3O4-Mg/Al-LDH/BC)。考察不同pH、Fe3O4-Mg/Al-LDH/BC投加量、初始磷浓度、吸附时间以及反应温度对Fe3O4-Mg/Al-LDH/BC吸附磷的影响。结果表明:Fe3O4-Mg/AlLDH/BC对磷的吸附符合准二级动力学模型和Freundlich模型,吸附过程是自发的吸热反应。在最佳的实验条件下(Fe3O4-Mg/Al-LDH/BC投加量为5.0g/L,磷初始质量浓度为20 mg/L,pH为6.0,温度为30℃,吸附时间为120 min),Fe3O4-Mg/AlLDH/BC对磷的去除率可达99.24%,该材料是一种新型高效的磷吸附材料。  相似文献   

17.
高价铬及双酚A在铁-乳酸体系中的同时光处理   总被引:1,自引:0,他引:1  
研究了Fe(Ⅲ)-乳酸配合物体系同时对Cr(Ⅵ)的光还原及双酚A(BPA)的光氧化处理,考察了光源、初始pH值、Fe(Ⅲ)、乳酸盐、Cr(Ⅵ)及BPA初始浓度等因素对Cr(Ⅵ)及BPA光处理效率的影响。结果表明:光照条件下,铁-乳酸配合物能有效实现对六价铬及BPA的同时光处理。同一体系中,Cr(Ⅵ)的光还原快于BPA的光氧化,Fe(Ⅲ)初始浓度的增加可同时提高Cr(Ⅵ)的光还原效率和BPA的光氧化效率;Fe(Ⅲ)-乳酸盐配合物光解产生的Fe(Ⅱ)是Cr(Ⅵ)的主要还原剂,其次级光反应中产生的.OH是BPA的氧化剂。  相似文献   

18.
过程监测及调控是废水生物除磷工艺得以长期稳定运行的基础。为了获取氧利用速率(OUR)在生物除磷过程的潜在应用及该过程氧利用特性,开展聚磷菌好氧吸磷过程的呼吸测量实验,分析了OUR曲线变化与磷酸盐浓度变化、胞内聚合物(PHAs)氧化、外源COD存在与否与浓度变化及pH变化之间的响应关系。研究得到如下结果:富集污泥无磷酸盐存在时,体系依然存在明显的氧利用行为,在不吸磷的情况下聚磷菌胞内的PHAs依然会好氧氧化;外源COD的存在将改变PAOs吸磷速率并延长好氧吸磷的结束时间;体系初始pH的不同导致好氧吸磷效率、吸磷过程pH变化趋势及变化程度的不同;不同的初始条件得到不同的OUR。分析证实,利用测量OUR来监测聚磷菌好氧吸磷过程的运行状态是可行的。  相似文献   

19.
将不同摩尔比Fe3+与OH-([Fe3+]:[OH-]=1:0、1:1、1:2和1:3)反应获得原位水解生成的羟基氧化铁(insituFeOxHy),研究了具有不同水解程度的羟基氧化铁对凝聚吸附除磷效能与机制。研究显示,InsituFeOxHy对磷的去除率随铁投量增大而升高,且均在中性pH范围内具有最佳除磷效果;在相同铁投量条件下,磷去除率随着[OH-]:[Fe3+]的升高而降低;当体系碱度较低时(pH〈6),引入OH-可促进Fe3+水解而提高除磷效果。4种羟基氧化铁均可在15s内可快速吸附磷,且吸附过程符合准二级动力学模型;Freundlich模型均可很好地描述磷在4种羟基氧化铁表面的吸附行为。磷酸盐吸附后,InsituFeOxHy表面Zeta电位明显降低,且[Fe3+]:[OH-]为1:0的羟基氧化铁降低最为显著。结合MINITEQ计算软件磷酸盐、铁盐形态分析结果显示,对于碱度较低的体系,通过投加一定量OH-可促进Fe3+水解,进而使得其更易与水中H2PO4-与HPO2 4-结合,生成具有多核羟基的磷酸铁络合物,进而提高除磷效果。  相似文献   

20.
以环形推流一体化氧化沟反应器厌氧段污泥为接种污泥,通过吸磷实验、硝酸盐还原产气实验、异染颗粒染色实验及PHB染色实验从接种污泥中筛选得到一株能实现同步脱氮除磷菌株N-12;经过16S rDNA测序鉴定,确定该菌株为不动杆菌属(Acinetobacter)。绘制该菌株的生长曲线,并设置0%、1%、2%、5%、10%和15%等6种不同初始接种比,以接种比作为微生物生物量的衡量参数,研究不同接种比对反硝化聚磷菌脱氮除磷效应的影响,确定菌株最佳接种比。实验结果表明:初始接种比2%体系的脱氮除磷效果最好;利用SPSS statistics 19统计软件对磷酸盐去除率、硝态氮去除率、OD600值及pH进行相关性分析,表明磷酸盐去除率和硝酸盐去除率显著正相关(Person相关系数=0.826,P0.01);且两者与OD600值及pH值都显著正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号