首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
由燃煤电站导致的大气颗粒物污染问题日益严峻,运用颗粒团聚技术实现除尘器内部细颗粒的高效捕集是未来除尘技术发展的重要趋势。为了实现除尘器尾部细颗粒的减排,本模拟对燃煤颗粒物在电除尘器内部不同团聚机理下细颗粒的相互作用进行了研究,基于Fluent软件,利用颗粒群平衡模型(PBM),通过自定义函数(UDF)功能导入团聚核函数分别就细颗粒在热团聚、湍流团聚、电团聚下的团聚情况进行计算。研究结果表明,细颗粒在电场团聚作用下团聚效果最佳,热团聚和湍流团聚效果次之。  相似文献   

2.
为了达到燃煤电厂超低排放的要求,运用CFD技术对装有3种不同孔隙率与不同湍流单元直径的湍流器的脱硫塔内热态流场进行数值模拟,分析速度、温度和压力分布随孔隙率和湍流单元直径的变化规律,揭示湍流器的作用机理。气、液两相分别选用RNG k-ε湍流模型和拉格朗日颗粒轨道模型,并结合SIMPLE算法进行数值模拟。模拟结果表明:安装湍流器可明显改善脱硫塔内烟气流场的均匀性,使横截面的速度标准方差减小到1.0以下,并有效延长浆液驻留时间,提高吸收区的气液接触概率及浆液利用率;在综合考虑流场分布、气液掺混程度与能量损失的情况下,安装孔隙率为50%、湍流单元直径为1.2 m的湍流器效果最佳。研究结果可为大型电厂脱硫塔中湍流器的优化及选用提供依据。  相似文献   

3.
内置涡核破碎翼旋风分离器具有维持较高效率同时降低阻力的特点。研究其内部颗粒受力情况对揭示其工作机理有重要意义。利用计算流体力学方法(CFD),采用雷诺应力模型(RSM)模拟流场,在此基础上,应用拉格朗日离散化模型(DPM)对传统Lapple型旋风分离器加设涡核破碎翼前后的内部颗粒进行追踪,并对其进行受力分析。结果表明:内置涡核破碎翼旋风分离器在颗粒分离时间及受力在数值上均与传统分离器有所差别;涡核破碎翼叶片较短时,径向合力主要表现为向外,离心力占主导作用,利于颗粒收集;叶片较长时,颗粒受到气流扰动作用加剧,径向上的运动随机性增加从而不利于分离。  相似文献   

4.
细颗粒湍流聚并技术是控制燃煤烟气中细颗粒排放的有效措施之一。为了研究烟气参数对湍流聚并效果的影响,在一种细颗粒湍流聚并器中分别对烟气流速、烟气温度、颗粒物浓度以及烟气含湿量进行实验测试。结果表明:烟气流速能显著增大聚并器内湍流强度,提高飞灰颗粒的聚并效率,烟气流速为16 m·s-1时,PM2.5聚并效率为44.51%;烟气温度在酸露点以上时,其对飞灰颗粒聚并效率的促进作用有限;颗粒物浓度越大,则烟道内单位体积的颗粒物数量越多,从而增加了颗粒间的碰撞概率,飞灰颗粒聚并效率明显提高,颗粒物浓度为35 mg·L~(-1)时,PM2.5的聚并效率达到52.48%;烟气含湿量较低时对飞灰颗粒聚并过程影响不大。  相似文献   

5.
通过对圆形搅拌容器内部流场的数值模拟,从湍流速度场、湍动耗散率和湍动能3个角度来分析该容器内的二维空间流态变化,及其对混凝过程中颗粒碰撞和絮体成长的影响,针对其不足之处,提出改进模型:方形、圆形挡板、多边形、圆角和方形导流板模型,并分别比较各模型在不同转速下的内部流场的变化。结果表明,在相同截面积的条件下,圆角模型更有利于颗粒的碰撞粘结和絮体的成长。  相似文献   

6.
目前,对颗粒凝结增长性能的数值模拟均忽略了其碰撞效应。为了对其进行补充,在相关研究的基础上,将颗粒群平衡模型(population balance module,PBM)与欧拉多相流模型进行耦合,通过用户自定义函数(user-defined function,UDF)同时引入碰撞团聚核函数和凝结增长速率函数,采用数值模拟,分析了初始蒸汽饱和度、停留时间、初始颗粒数浓度和初始粒径对不可溶PM_(10)凝结增长性能的影响。模拟结果表明,初始蒸汽饱和度越大,颗粒凝结增长后的最终粒径越大;在一定范围内,延长停留时间,能够促进颗粒的凝结增长;初始颗粒数浓度的增大不利于颗粒的凝结增长;初始粒径越小,颗粒凝结增长性能越好,相变凝结的效果越明显。上述模拟结果与实验结果一致。  相似文献   

7.
首先利用高速粉碎机对大颗粒废弃电路板真空热解渣进行破碎处理,然后采用筛分和颗粒计数法研究破碎产物的破碎规律与解离特性。结果表明,大颗粒废弃电路板真空热解渣在破碎过程中存在着显著的选择性破碎,金属铜主要分布在较粗粒级产物中,玻璃纤维和炭黑则主要分布在较细粒级产物中,并且铜能在较大粒级上实现充分解离;98.64%的铜分布在粒级为0.45~4.0 mm的破碎产物中,而92.05%的玻璃纤维和炭黑分布在粒级为-0.45 mm的破碎产物中;当粒级为-2.0 mm时,铜的解离度达到100%。  相似文献   

8.
提出了一种新型诱导界面反应器(SII),通过优化反应器内的旋流流动,有效降低了活性污泥颗粒与水相的分离因子,改善了污泥床反应器内的泥/水两相接触状况,提升了反应器的污水处理负荷。构建了基于旋流修正的湍流模型和随机轨道模型,结合相应的计算流体力学(CFD)方法,模拟并预测了反应器内流体强烈湍动以及由此引发的颗粒涡流扩散。改进后的SII反应器实现了三维结构的循环流动以及污泥颗粒在装置内的自沉降,促进了颗粒与水相的充分接触。  相似文献   

9.
燃烧过程颗粒物的形成及我国燃烧源分析   总被引:4,自引:0,他引:4  
燃料燃烧会排放一次颗粒物和二次颗粒物,一次颗粒物中亚微米粒子主要是由于无机矿物质经蒸发-成核-凝结-凝并的途径形成的;超微米颗粒的产生不同于亚微米颗粒的形成,是由于破碎机理.二次颗粒物是由气态前驱体在大气中转化而成的.我国燃烧源主要是煤燃烧、燃油机动车和农村生活燃料等.深入认识颗粒物的形成及燃烧源的特征对有效控制颗粒物的排放是很有帮助的.  相似文献   

10.
燃料燃烧会排放一次颗粒物和二次颗粒物,一次颗粒物中亚微米粒子主要是由于无机矿物质经蒸发-成核-凝结-凝并的途径形成的;超微米颗粒的产生不同于亚微米颗粒的形成,是由于破碎机理.二次颗粒物是由气态前驱体在大气中转化而成的.我国燃烧源主要是煤燃烧、燃油机动车和农村生活燃料等.深入认识颗粒物的形成及燃烧源的特征对有效控制颗粒物的排放是很有帮助的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号