首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

2.
With the potential expansion of forest conservation programs spurred by climate-change agreements, there is a need to measure the extent to which such programs achieve their intended results. Conventional methods for evaluating conservation impact tend to be biased because they do not compare like areas or account for spatial relations. We assessed the effect of a conservation initiative that combined designation of protected areas with payments for environmental services to conserve over wintering habitat for the monarch butterfly (Danaus plexippus) in Mexico. To do so, we used a spatial-matching estimator that matches covariates among polygons and their neighbors. We measured avoided forest loss (avoided disturbance and deforestation) by comparing forest cover on protected and unprotected lands that were similar in terms of accessibility, governance, and forest type. Whereas conventional estimates of avoided forest loss suggest that conservation initiatives did not protect forest cover, we found evidence that the conservation measures are preserving forest cover. We found that the conservation measures protected between 200 ha and 710 ha (3-16%) of forest that is high-quality habitat for monarch butterflies, but had a smaller effect on total forest cover, preserving between 0 ha and 200 ha (0-2.5%) of forest with canopy cover >70%. We suggest that future estimates of avoided forest loss be analyzed spatially to account for how forest loss occurs across the landscape. Given the forthcoming demand from donors and carbon financiers for estimates of avoided forest loss, we anticipate our methods and results will contribute to future studies that estimate the outcome of conservation efforts.  相似文献   

3.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

4.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

5.
We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large‐scale logging and 554 ha by small‐scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade‐long financial support from Mexican and international philanthropists and businesses to create local alternative‐income generation and employment, resulted in the decrease of large‐scale illegal logging from 731 ha affected in 2005–2007 to none affected in 2012, although small‐scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long‐term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico—which engage in one of the longest known insect migrations—are threatened by deforestation, and a multistakeholder, regional, sustainable‐development strategy is needed to protect the reserve. Tendencias en la Deforestación y la Degradación de Forestal después de una Década de Monitoreo en la Reserva de la Biósfera de la Mariposa Monarca en México  相似文献   

6.
We studied Ovenbirds ( Seiurus aurocapillus ) in northern New Hampshire during 1992 and 1993 to determine whether edge-related changes in habitat use and reproductive success reported in fragmented landscapes exist in predominantly forested landscapes. Six study plots were placed adjacent to four recent clearcuts (2.1–5 ha) and extended 400 m into the forest interior. Nests, territories, and territorial males obtaining mates were equally distributed in edge (0–200 m) and interior (201–400 m) areas. Nest survival was higher in the forest interior in 1992 and for 1992 and 1993 combined. The proportion of pairs fledging ≥ 1 young, fledgling weight, and fledgling wing-chord did not differ between edge and interior in either year. Number of young fledged per pair was slightly lower in edge areas, but these differences were not significant. We conclude that clearcutting in extensively forested landscapes can affect Ovenbird reproductive success. Nevertheless, the effect on Ovenbird populations is moderated by the abundance of mature forest cover in the region and by the tendency of Ovenbirds to renest after initial nest failure.  相似文献   

7.
Abstract:  We evaluated the importance of small (<5 ha) forest patches for the conservation of regional plant diversity in the tropical rainforest of Los Tuxtlas, Mexico. We analyzed the density of plant species (number of species per 0.1 ha) in 45 forest patches of different sizes (1–700 ha) in 3 landscapes with different deforestation levels (4, 11, and 24% forest cover). Most of the 364 species sampled (360 species, 99%) were native to the region, and only 4 (1%) were human-introduced species. Species density in the smallest patches was high and variable; the highest (84 species) and lowest (23 species) number of species were recorded in patches of up to 1.8 ha. Despite the small size of these patches, they contained diverse communities of native plants, including endangered and economically important species. The relationship between species density and area was significantly different among the landscapes, with a significant positive slope only in the landscape with the highest deforestation level. This indicates that species density in a patch of a given size may vary among landscapes that have different deforestation levels. Therefore, the conservation value of a patch depends on the total forest cover remaining in the landscape. Our findings revealed, however, that a great portion of regional plant diversity was located in very small forest patches (<5 ha), most of the species were restricted to only a few patches (41% of the species sampled were distributed in only 1–2 patches, and almost 70% were distributed in 5 patches) and each landscape conserved a unique plant assemblage. The conservation and restoration of small patches is therefore necessary to effectively preserve the plant diversity of this strongly deforested and unique Neotropical region.  相似文献   

8.
ABSTRACT

Forest cover dynamics (1993-2018) was assessed in two regions on the Yucatan Peninsula: Zona Maya (ZM), 67% indigenous with shifting cultivation and community forestry; and Bacalar–Rio Hondo (BRH), mainly commercial agriculture and pastureland. Degradation (12,915 ha y?1) exceeded deforestation (5882 ha y?1) and was worse in BRH. In BRH there was a net forest loss (?1.6% y?1) associated with pastureland and commercial agriculture. In ZM, mature forest recovery (1.4% y?1) and dynamic forest cover (continuous loss and gain) were associated with shifting cultivation. Changes were more intense during 2011–2018 and gains of mature forest in ZM and deforested areas in BRH targeted secondary vegetation. Fragments of mature and secondary vegetation decreased, and connectivity improved in ZM, but opposite trends occurred in BRH. Reporting and monitoring deforestation using Global Forest Watch data is inadequate since 62% of forest cover loss represent degrading or recovering forest cover.  相似文献   

9.
Refining Biodiversity Conservation Priorities   总被引:3,自引:1,他引:3  
Abstract:  Although there is widespread agreement about conservation priorities at large scales (i.e., biodiversity hotspots), their boundaries remain too coarse for setting practical conservation goals. Refining hotspot conservation means identifying specific locations (individual habitat patches) of realistic size and scale for managers to protect and politicians to support. Because hotspots have lost most of their original habitat, species endemic to them rely on what remains. The issue now becomes identifying where this habitat is and these species are. We accomplished this by using straightforward remote sensing and GIS techniques, identifying specific locations in Brazil's Atlantic Forest hotspot important for bird conservation. Our method requires a regional map of current forest cover, so we explored six popular products for mapping and quantifying forest: MODIS continuous fields and a MODIS land cover (preclassified products), AVHRR, SPOT VGT, MODIS (satellite images), and a GeoCover Landsat thematic mapper mosaic (jpg). We compared subsets of these forest covers against a forest map based on a Landsat enhanced thematic mapper. The SPOT VGT forest cover predicted forest area and location well, so we combined it with elevation data to refine coarse distribution maps for forest endemic birds. Stacking these species distribution maps enabled identification of the subregion richest in threatened birds—the lowland forests of Rio de Janeiro State. We highlighted eight priority fragments, focusing on one with finer resolved imagery for detailed study. This method allows prioritization of areas for conservation from a region >1 million km2 to forest fragments of tens of square kilometers. To set priorities for biodiversity conservation, coarse biological information is sufficient. Hence, our method is attractive for tropical and biologically rich locations, where species location information is sparse.  相似文献   

10.
We compare existing nontimber forest product extraction systems in Petén, Guatemala, and West Kalimantan, Indonesia, to identify key ecological, socioeconomic, and political factors in the design and implementation of extractive reserves. Ecological parameters include the spatial and temporal availability of harvested products and the sustainability of harvesting practices from both a population and an ecosystem perspective. Socioeconomic and political factors include the presence or absence of well-defined resource tenure rights, physical and social infrastructure, markets, and alternative land uses. We conclude that although extractive reserves can play a significant role in preserving tropical forests as a part of a broader land-use spectrum, their effectiveness is highly dependent on prevailing local ecological, socioeconomic, and political conditions. Ultimately, extractive reserves should be regarded as one component of an overall approach to the problem of tropical deforestation.  相似文献   

11.
We present a conservation index based upon the interaction of the size of terrestrial protected areas, remaining forest habitat, deforestation rates, and biological richness to identify conservation potentials, threats, and strategies for 23 Indo-Pacific countries. This conservation potential/threat index shows that four of the largest and most species-rich countries—China, Indonesia, India, and Thailand—contain 82% of the region's large reserves (more than 1000 km2) and 86% of the region's area designated for protection. The skewed regional distribution and small number of large reserves per country call for the expansion of existing protected areas and, where possible the establishment of new parks and transfrontier reserves. The index indicates high potential for conservation efforts in Papua New Guinea, Laos, Myanmar, New Caledonia, Vanuatu, and the Solomon Islands, which have a high percentage of remaining forested habitats. high species richness, or endemism, but which lack comprehensive protected area systems. The index also predicts that if current rates of deforestation continue, only Brunei, Bhutan, Indonesia, Taiwan, and Malaysia will have adequate proportions of their respective land areas under some form of protection while still maintaining a minimal percentage (20% or more) of forested habitat outside reserves. Based on the regional analysis, we identify priority countries for investment in biodiversity conservation, and we evaluate funding responses earmarked for those countries. We then show how the index can be adapted to different geographical scales using examples from Indonesia, Malaysia, and the Philippines.  相似文献   

12.
This article presents a system dynamics (SD) method to examine the problem of forest degradation. The model developed takes a system-oriented view of forest management, embracing both social and biophysical factors affecting deforestation. Social factors examined are socio-economic variables or elements that influence behaviour and decision-making choices at the household level. Biophysical factors are four sub-components that are considered major land uses namely, the paddy field component, rattan plantations, coffee plantations and forest stands. The model was applied in a case study located in Pasir District of East Kalimantan, Indonesia. The site covers an area that includes a protected forest and a privately allocated timber license concession. Three village communities are examined in the case study. The SD model developed was applied to the case study focusing on three management policies or scenarios, which are based on access rights to the forest resources within the study area. Specifically, the property arrangements examined in each scenario are: Policy 1 – status quo (i.e. continue present property rights arrangements); Policy 2 – local communities manage the forest exclusively; and Policy 3 – collaborative management involving both local communities and a private company. Results from the model show that the third policy is the most viable option, and also lead to a win–win solution.  相似文献   

13.
Abstract: Conservation development projects combine real‐estate development with conservation of land and other natural resources. Thousands of such projects have been conducted in the United States and other countries through the involvement of private developers, landowners, land trusts, and government agencies. Previous research has demonstrated the potential value of conservation development for conserving species, ecological functions, and other resource values on private lands, especially when traditional sources of conservation funding are not available. Nevertheless, the aggregate extent and effects of conservation development were previously unknown. To address this gap, we estimated the extent and trends of conservation development in the United States and characterized its key attributes to understand its aggregate contribution to land‐conservation and growth‐management objectives. We interviewed representatives from land trusts, planning agencies, and development companies, searched the Internet for conservation development projects and programs, and compiled existing databases of conservation development projects. We collected data on 3884 projects encompassing 1.38 million ha. About 43% of the projects targeted the conservation of specific plant or animal species or ecological communities of conservation concern; 84% targeted the protection of native ecosystems representative of the project area; and 42% provided buffers to existing protected areas. The percentage of protected land in conservation development projects ranged from <40% to >99%, and the effects of these projects on natural resources differed widely. We estimate that conservation development projects have protected roughly 4 million ha of land in the United States and account for about 25% of private‐land conservation activity nationwide.  相似文献   

14.
Abstract:  Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.  相似文献   

15.
Protected areas are considered vital for the conservation of biodiversity. Given their central role in many conservation strategies, it is important to know whether they adequately protect biodiversity within their boundaries; whether they are becoming more isolated from other natural areas over time; and whether they play a role in facilitating or reducing land‐cover change in their surroundings. We used matching methods and national and local analyses of land‐cover change to evaluate the combined effectiveness (i.e., avoided natural‐cover loss), isolation (i.e., changes in adjacent areas), and spillover effects (i.e., impacts on adjacent areas) of 19 national parks in South Africa from 2000 to 2009. All parks had either similar or lower rates of natural‐cover loss than matched control samples. On a national level, mean net loss of natural cover and mean net gain of cultivation cover decreased with distance from park boundary, but there was considerable variation in trends around individual parks, providing evidence for both increased isolation and buffering of protected areas. Fourteen parks had significant positive spillover and reduced natural‐cover loss in their surroundings, whereas five parks experienced elevated levels of natural‐cover loss. Conclusions about social‐ecological spillover effects from protected areas depended heavily on the measures of land‐cover change used and the scale at which the results were aggregated. Our findings emphasize the need for high‐resolution data when assessing spatially explicit phenomena such as land‐cover change and challenge the usefulness of large‐scale (coarse grain, broad extent) studies for understanding social‐ecological dynamics around protected areas.  相似文献   

16.
Abstract: Protected areas cover over 12% of the terrestrial surface of Earth, and yet many fail to protect species and ecological processes as originally envisioned. Results of recent studies suggest that a critical reason for this failure is an increasing contrast between the protected lands and the surrounding matrix of often highly altered land cover. We measured the isolation of 114 protected areas distributed worldwide by comparing vegetation‐cover heterogeneity inside protected areas with heterogeneity outside the protected areas. We quantified heterogeneity as the contagion of greenness on the basis of NDVI (normalized difference vegetation index) values, for which a higher value of contagion indicates less heterogeneous land cover. We then measured isolation as the difference between mean contagion inside the protected area and mean contagion in 3 buffer areas of increasing distance from the protected‐area border. The isolation of protected areas was significantly positive in 110 of the 114 areas, indicating that vegetation cover was consistently more heterogeneous 10–20 km outside protected areas than inside their borders. Unlike previous researchers, we found that protected areas in which low levels of human activity are allowed were more isolated than areas in which high levels are allowed. Our method is a novel way to assess the isolation of protected areas in different environmental contexts and regions.  相似文献   

17.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

18.
Abstract: The Atlantic rainforest of southern Bahia is one of the last remnants of the lowland forest of eastern Brazil that once covered the entire coastal area from Rio Grande do Norte to Rio Grande do Sul ( lat 8°–28° S) and has been deforested to a small fraction of its original cover (1–12%). All recent vegetation surveys have been based on optical satellite data, which is hampered by cloud cover and by southern Bahia's intricate mix of forest patches with other tree crops, especially cocoa. We describe the application of radar remote-sensing data to distinguish forest patches from cocoa planted in the shade of natural-forest trees. Radar, unlike optical sensors, is not obstructed by cloud cover and can acquire information about forest structure by penetrating into the vegetation canopy. The vegetation map generated from radar data clearly separates forest patches based on the degree of structural disturbance such as the density of shaded trees, the openness of the canopy, and the density of the monodominant Erythyrina shaded trees. The structural classification based on the radar data, and shown on the map, can help researchers assess the degree of fragmentation of the original Atlantic coastal forest and delineate areas of less disturbance with higher potential for conservation of biodiversity. This information can then be applied to conservation planning, especially the design and monitoring of nature reserves and the modeling of biological corridors.  相似文献   

19.
We examined the density and abundance of marketable products in managed forest (rubber gardens, fruit gardens, and dry rice fallows) and in primary forest surrounding the Dayak village of Kembera, near Gunung Palung National Park, West Kalimantan, Indonesia. We calculated the proportion of trees that were marketable and useful for local consumption by counting and identifying trees in each managed forest type, and we documented extraction of products through interviews. Villagers harvested four marketable tree products: tengkawang seeds ( Shorea stenoptera ), durian fruits (various Durio spp.), rubber ( Hevea brasiliensis ), and timber, especially Bornean ironwood ( Eusideroxylon zwageri ). We inventoried trees at least 20 cm diameter at breast height (dbh) of marketed species from 0.4-ha plots in primary forest ( n = 8) and from 0.1-ha plots in each managed forest type ( n = 10–11). With the exception of timber, the density of trees producing a marketable product was significantly higher in the forest type managed for that product than the density of the marketed species, or of similar wild species, in primary forest. Total abundance (product of density and available area) of durian and tengkawang was greater in primary forest; however, villagers gathered these products only from managed forest. We infer from this choice a greater efficiency of harvesting from trees in dense stands near the village. Historically, this choice resulted in deliberate development of fruit gardens in preference or in addition to gathering from the more distant, primary forest. Because of low product density in primary forest, extractive forest reserves or buffer zones designed to encourage the production of fruits such as tengkawang or durian may not provide a sufficient incentive for the protection of primary forest around Kembera and other Dayak villages near Gunung Palung National Park.  相似文献   

20.
Abstract: The occurrence of vascular plants was surveyed on 207 islands (size range 0.01–390.2 ha, number of plant species 1–449) offshore from the city of Helsinki in the Baltic Sea to examine the conservation value of these islands. We calculated a rarity score for each species (1/number of islands occupied by the species) and a biodiversity score for each island (sum of the rarity scores of each species present on the island). Positive correlations between species number and biodiversity score (r s = 0.97, p < 0.001) and between biodiversity score and island area (r s = 0.87, p < 0.001) indicated that these parameters are heavily dependent on island size. With the goal of including at least one occurrence (island) of all plant species, an iterative selection algorithm chose a set of 41 islands whose average size (29.3 ha) was four times the average size of all existing islands (7.0 ha). Strong nestedness ( N < 54) explains the concentration of plant species diversity on large islands. An operational strategy for selection of sites for protection is to complement the set produced by a selection algorithm with target species not yet included (e.g., endangered species with several occurrences). Comprehensive mapping and analysis of a taxonomic group will help integrate conservation biology into land-use planning and increase the quality of the networks of protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号