首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
上海吴泾化工厂年产合成氨6万吨(老系统)、联醇1.5万吨,以20—30毫米中块焦为原料。其造气含氰废水量约为150米~3/时,水温45℃左右,pH 为7,废水中 CN~-含量约14.71毫克/升。我厂硫酸车间年产硫酸18万吨,采用水洗流程。其净化工段废水量亦为150米~3/时,水温44℃,pH 为1.82,废水中 Fe_总含量为114.22毫克/升、F 为96.14毫克/升、As 为13.36毫克/升。参考用铁盐治理含氰废水的资料,我们试验了直接用硫酸  相似文献   

2.
贵州化肥厂的合成系统每天要排放1500—1700米~3的弛放气(弛放气、填函气和吹除气)。为了保护环境,减少污染,并为职工解决“买煤难”的问题,该厂投资52万余元,1984年建成弛放气回收系统。用水进行二段吸收,将废气中氨变成稀氨水,送入尿素解吸系统;除氨并经过脱水分离的弛放气(含氢60—70%,CH_410—12%,其余是N_2和微量氨)送到厂、车间办公室、食堂、招待所,托儿所、职工医院和职工家庭,作为生活用燃料气。这套回收系统运行三年,共回收氨水折合净氨1700余吨,价值60多万元;节约原煤3000余吨,折  相似文献   

3.
江苏省太仓化肥厂是年产3万余吨合成氨、12万吨碳铵的小化肥厂。造气工段每年排出有机废水约150万吨,碳化工段排出稀氨水20余万吨,产生的废气4700余万标准米~3,化工余热59000多万大卡,锅炉炉渣3400多吨,碳化煤渣21600多吨。为根治“三废”,保护环境,该厂依靠技术进步,结合技术改造,开发了“三废”资源综合利用,所做工作如下:  相似文献   

4.
采用热解—氨浸工艺处理含铜废催化剂(w(Cu)为23.6%),优化了工艺条件,并通过蒸氨还原法制备出Cu2O产品。实验结果表明:热解工段中,控制管式热解炉的空气流量为3.0 m3/min,在升温速率20 ℃/min、热解终温600 ℃、终温保持时间90 min的优化条件下,含铜废催化剂中的有机物热解完全;氨浸工段中,以NH4Cl-NH3-H2O溶液为氨浸液,控制氨浸温度为40 ℃,在烧成料研磨时间90 min(粒径29.43 μm)、氨浸液总氨浓度4 mol/L、氨浸时间80 min的优化条件下,铜浸出率达到98%;经蒸氨还原法制得的Cu2O产品的质量符合HG/T 2961—2010《工业氧化亚铜》中的一等品标准,产率为24%。  相似文献   

5.
1 前言我厂是一个年产12000 t氨的小型合成氨厂。碳化工段原料气的净化,是采用传统的氨回收塔吸收后,再用大量的清水洗涤,洗涤后得到的稀氨水,由于水量大,氨浓度低,难以利用而直接外排,这样不仅造成氨的浪费,而且严重污染了环境。近年来,国内一些合成氨企业对稀氨水进行了回收。为了达到生产用氨的平衡和杜绝外  相似文献   

6.
1.小氮肥行业三废名称洽理方法参考投资(万元)效建设单位(l)煤造气吹风气(2)合成放空气(3)弛放气吹风气~\放空气”1夕”废热锅炉燃烧室”排空弛放气刁 年产3万吨NH:装置。利用心三气,热值产汽4.5吨/时,P:太仓化肥厂16公斤/厘米,,T:300℃。全年节约原生产用汽折算煤2600吨,价值20万元。石落丽募藏厂丽面瘩成放空气的余压膨胀节涛制取冷}2,}年产3 .6万吨NIJ3装置,HZ 放气】量仁深冷法回收氢气,HZ作原料气,甲烷气!}回收率大于96%,可增产NH, !利用}}5%左右,吨氨节煤80一100公 .}}斤,年净利47.2万元.无锡县化肥厂等压吸收回收氨后,余气引进…  相似文献   

7.
1.废水概况我厂主要以二甲苯为原料,生产涤纶化纤产品。在生产过程中有好几种特高浓度的有机废水排出。(1)三聚乙醛工段排放的废水废水量为8米~3/日,COD_(cr)浓度为8000—12000ppm。废水中含乙醛40%,三聚乙醛0.2%,高聚物少许。(2)对苯二甲酸工段碱洗废水每隔2个月碱洗设备排放一次,废水量为200米~3/次,COD_(cr)浓度为1—1.5万ppm。废水中含对苯二甲酸0.465%,对  相似文献   

8.
技术服务台     
科研成果转让1.硫酸生产水洗净化流程废水封闭循环新工艺本工艺保留了水洗净化流程的优点,彻底解决酸性污水排放问题,且不产生无用的稀酸。在一转一吸条件下能将尾气中二氧化硫的浓度降至0.2%以下,达到工业排放标准。本技术用于生产规模1—2万吨/年硫酸装置的技术改造和新建项目。使用单位所需投资(包括净化及污水处理)30—45万元。可提供净化工段及水处理工段全套施工图设计,转让费约5万元(包括工程设计费)。(2052)2.印刷线路板生产线废液、废水的治理  相似文献   

9.
四川省小氮肥厂从工艺改革入手,实现了碳平衡和水平衡,取得了显著的环境、经济和社会效益。他们的措施是:(1)从多种途径回收CO_2,实现碳平衡,增产固体碳铵,减少氨水;(2)从严格控制软水加入量和采用稀氨水逐级提浓技术,实现了水平衡,消除了稀氨水的产生和排放。  相似文献   

10.
吴国贤 《化工环保》1993,13(2):118-119
我厂有一套年产12万吨合成氨装置,铜洗工段原采用两次软水洗涤法除去再生气中的氨,产生的废水年总量达18万吨。一次洗涤水中氨浓度为2—3%,二次洗涤水中氨浓度为0.5%左右。两次洗涤再生气流程如图1所示。  相似文献   

11.
技术服务台     
科研成果转让一、完全氧化法处理含氰电镀废水本技术适用于常温常压下处理氰化电镀生产过程中产生的含氰电镀废水。设备简单,操作容易。经处理后的废水,氰含量低于国家排放标准(0.5毫克/升),其最佳处理结果可低于饮用水标准。处理成本约为0.7元/吨左右(氰含量约为50毫克/升的废水)。处理效果好,无二次污染。使用单位所需投资约1—2万元。(2048)二、氨碱厂废液晒盐中试废液晒盐系属盐碱联产综合利用的技术内容之  相似文献   

12.
成都天然气化工厂合成氨车间投资15万元,采用“计量加入、分段回收、逐级提浓”法进行合成氨生产的氨回收和稀氨水治理。消除了稀氨水的过量和排放,实现了合成氨生产的水平衡;提高了跑氨回收率和氨利用率;大幅度降低了消耗,取得了显著的经济、节能和环境等诸方面的综合社会效益。  相似文献   

13.
谭克峰 《化工环保》2018,38(2):191-195
采用混凝—光催化氧化(UV-NaClO或UV-H_2O_2)组合工艺处理某石化企业煤制氢生产中排放的含氰废水,并在实验室研究(小试)的基础上进行了放大规模试验(中试)。小试结果表明:混凝工段的适宜工艺条件为不调节混凝pH、混凝剂投加量200 mg/L;相同氧化剂投加量下H_2O_2溶液氧化降解氰化物的能力较NaClO溶液强,后者虽可将总氰化物质量浓度降至1 mg/L以下,但氧化剂消耗量过大。经反复试验和综合分析,将中试工艺改进为沉降—UV-H_2O_2工艺。中试结果表明:采用沉降—UV-H_2O_2工艺处理含氰废水,处理效果显著且稳定,处理成本低廉(约为8元/m3),值得推广。  相似文献   

14.
我厂硫酸生产年产量为12万吨,采用一转一吸水洗净化流程,尾气中SO_2浓度约3—4%,超过排放标准3倍,每年约有3500吨SO_2排入大气,造成严重的污染和资源浪费。根据原料来源和产品销售情况,我厂选择了氨法吸收硫酸尾气的方案。采用该法处理后,我厂尾气中SO_2浓度最高为108公斤/小时,最低时只有36公斤/小时(62米高烟  相似文献   

15.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

16.
在大型钢铁联合企业焦化厂的高温炼焦过程中,同时副产占干配煤重量0.28—0.35%的氨。(在焦炉煤气中含量为8—13克/米~3),这些氨通过洗涤塔凉水洗涤,然后加热蒸发,再冷凝,从而制成18—20%的浓氨水。浓氨水本是一种很好的农用氮素肥料,但由于是液体,运输极不方便,  相似文献   

17.
我厂硫酸车间采用硫磺制酸,生产工艺为两转两吸,年产量8万吨。生产正常时,硫的平均总转化率为99.5%,尾气中 SO_2浓度为500—600ppm,酸雾量为300毫克/米~3,尾气经95米高烟囱放空。为了进一步减少SO_2污染,根据我厂的具体情况,将染料还原靛蓝生产过程中排出的废混碱液(10%,含NaOH 和 KOH)作为硫酸尾气的吸收液。该反应生成物为亚硫酸氢盐的混合物。  相似文献   

18.
年产1万吨合成氨的江淮化肥厂,日排废水2200吨。废水中有害物含量普遍超标好几倍,一般含硫化物28毫克/升、氰化物1.74毫克/升、COD290.6毫克/升、NH_3-N 700—1300毫克/升,pH9—10。废水排入巢湖,污染水厂水质,被省、市列为限期治理单位。自1984年起,该厂从技术改造入手,对废水进行综合治理。 1.改革化肥生产工艺用“加压变换”、“加压碳化”代替“常压变换”和“低压碳化”,用“活性炭吸附脱硫”代替原“稀氨水中和脱硫”。 2.实现废水资源化本着好水好用,一水多用,废水回用的原则,按生产工艺和设备对所用水质的不同  相似文献   

19.
采用A/O—Fenton氧化—混凝组合工艺处理丁苯橡胶生产废水。试验结果表明:A/O工段中,在兼氧池HRT 8 h、好氧池HRT 16 h、好氧池MLSS 2 500~3 500 mg/L的优化参数下,平均COD,NH3-N,TP去除率分别为72.9%,96.2%,51.3%;Fenton氧化工段中,在30%(w)H2O2溶液加入量0.2%(φ)、n(H2O2)∶n(Fe SO4)=2∶1、Fenton氧化反应时间70 min、Fenton氧化进水p H 5.0的优化条件下,COD和TP的去除率分别为56.0%和57.0%;A/O—Fenton氧化—混凝组合工艺对COD、NH3-N、TP、浊度的总去除率分别为94.8%,96.2%,100%,94.0%,处理后出水满足GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

20.
欧鲁荣 《化工环保》1992,12(2):94-96,93
广西化工设计院为广西河池氮肥厂设计了一套废氨水处理装置,将14%废(?)水加工成液氨,既利用了资源又消除了对水源的污染。本文介绍了处理原理、工艺流程与控制指标,并较详细地介绍了精馏塔、氨冷凝器、溶液热交换器等主要工艺设备的设计计算,这对目前氮肥工业稀氨水的处理有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号