首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Presented here is a reanalysis of results previously presented by [Davis, B.M., Istok, J.D., Semprini, L., 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129-146] of push-pull tests using radon as a naturally occurring partitioning tracer for evaluating NAPL contamination. In a push-pull test where radon-free water and bromide are injected, the presence of NAPL is manifested in greater dispersion of the radon breakthrough curve (BTC) relative to the bromide BTC during the extraction phase as a result of radon partitioning into the NAPL. Laboratory push-pull tests in a dense or DNAPL-contaminated physical aquifer model (PAM) indicated that the previously used modeling approach resulted in an overestimation of the DNAPL (trichloroethene) saturation (S(n)). The numerical simulations presented here investigated the influence of (1) initial radon concentrations, which vary as a function of S(n), and (2) heterogeneity in S(n) distribution within the radius of influence of the push-pull test. The simulations showed that these factors influence radon BTCs and resulting estimates of S(n). A revised method of interpreting radon BTCs is presented here, which takes into account initial radon concentrations and uses non-normalized radon BTCs. This revised method produces greater radon BTC sensitivity at small values of S(n) and was used to re-analyze the results from the PAM push-pull tests reported by Davis et al. The re-analysis resulted in a more accurate estimate of S(n) (1.8%) compared with the previously estimated value (7.4%). The revised method was then applied to results from a push-pull test conducted in a light or LNAPL-contaminated aquifer at a field site, resulting in a more accurate estimate of S(n) (4.1%) compared with a previously estimated value (13.6%). The revised method improves upon the efficacy of the radon push-pull test to estimate NAPL saturations. A limitation of the revised method is that 'background' radon concentrations from a non-contaminated well in the NAPL-contaminated aquifer are needed to accurately estimate NAPL saturation. The method has potential as a means of monitoring the progress of NAPL remediation.  相似文献   

2.
Field data of physical properties in heterogeneous crystalline bedrock, like porosity and fracture aperture, is associated with uncertainty that can have a significant impact on the analysis of solute transport in rock fractures. Solutions to the central temporal moments of the residence time probability density function (PDF) are derived in a closed form for a solute Dirac pulse. The solutions are based on a model that takes into account advection along the fracture plane, diffusion into the rock matrix and sorption kinetics in the rock matrix. The most relevant rock properties including fracture aperture and several matrix properties as well as flow velocity are assumed to be spatially random along transport pathways. The mass transport is first solved in a general form along one-dimensional pathways, but the results can be extended to multi-dimensional flows simply by substituting the expected travel time for inert water parcels. Based on data obtained with rock samples taken at Asp? Hard Rock Laboratory in Sweden, the solutions indicate that the heterogeneity of the rock properties contributes to increasing significantly both the variance and the skewness of the residence time probability density function for a pulse travelling in a fracture. The Asp? data suggests that the bias introduced in the variance of the residence time PDF by neglecting the effect of heterogeneity of the rock properties on the radionuclide migration is very large for fractures thinner than a few tenths of a millimetre.  相似文献   

3.
A model-based interpretation of laboratory-scale experimental data is presented. Hydrolysis experiments carried out using thin glass tanks filled with glass beads to construct a hypothetical and inert, homogeneous porous medium were analysed using a 2D numerical model. A new empirical formula, based upon results for non-reactive (tracer) experiments is used to calculate transversal dispersivity values for a range of grain sizes and any flow velocities. Combined with effective diffusion coefficients calculated from Stokes-Einstein type equations, plume lengths arising from mixing between two solutes can be predicted accurately using numerical modelling techniques. Moreover, pH and ion concentration profiles lateral to the direction of flow of the mixing species can be determined at any given point downstream, without the need for result fitting. In our case, this approach does not lead to overpredictions of lateral mixing, as previously reported when using parameters derived from non-reactive tracer experiments to describe reactive solute transport. The theory is based on the assumption of medium homogeneity.  相似文献   

4.
Cho J  Annable MD 《Chemosphere》2005,61(7):899-908
In this study, we investigate pore scale morphology of nonaqueous phase liquids (NAPLs) trapped in different pore sizes using tracer techniques. Specific interfacial area and saturation of NAPL trapped in homogeneous sands were measured using the interfacial and partitioning tracer techniques. The observed NAPL-water interfacial areas increased in a log-linear fashion with decreasing sand grain size, but showed no clear trend with residual NAPL saturation formed in the various grain sizes. The measured values were used to calculate the NAPL morphology index, which characterizes the spatial NAPL distribution within the pore space. The NAPL morphology indices, increased exponentially with decreasing grain size, indicating that the NAPL becomes smaller, but more blobs. For a fixed grain size, the specific interfacial area and saturation of the NAPL were measured following changes caused by dissolution using alcohol. The observed interfacial areas showed a decrease linearly as a function of the NAPL saturation.  相似文献   

5.
Performance assessment of NAPL remediation in heterogeneous alluvium   总被引:1,自引:0,他引:1  
Over the last few years, more than 40 partitioning interwell tracer tests (PITTs) have been conducted at many different sites to measure nonaqueous phase liquid (NAPL) saturations in the subsurface. While the main goal of these PITTs was to estimate the NAPL volume in the subsurface, some were specifically conducted to assess the performance of remedial actions involving NAPL removal. In this paper, we present a quantitative approach to assess the performance of remedial actions to recover NAPL that can be used to assess any NAPL removal technology. It combines the use of PITTs (to estimate the NAPL volume in the swept pore volume between injection and extraction wells of a test area) with the use of several cores to determine the vertical NAPL distribution in the subsurface. We illustrate the effectiveness of such an approach by assessing the performance of a surfactant/foam flood conducted at Hill Air Force Base, UT, to remove a TCE-rich NAPL from alluvium with permeability contrasts as high as one order of magnitude. In addition, we compare the NAPL volumes determined by the PITTs with volumes estimated through geostatistical interpolation of aquifer sediment core data collected with a vertical frequency of 5-10 cm and a lateral borehole spacing of 0.15 m. We demonstrate the use of several innovations including the explicit estimation of not only the errors associated with NAPL volumes and saturations derived from PITTs but also the heterogeneity of the aquifer sediments based upon permeability estimates. Most importantly, we demonstrate the reliability of the  相似文献   

6.

Regulatory limits on cadmium (Cd) content in food products are tending to become stricter, especially in cereals, which are a major contributor to dietary intake of Cd by humans. This is of particular importance for durum wheat, which accumulates more Cd than bread wheat. The contamination of durum wheat grain by Cd depends not only on the genotype but also to a large extent on soil Cd availability. Assessing the phytoavailability of Cd for durum wheat is thus crucial, and appropriate methods are required. For this purpose, we propose a statistical model to predict Cd accumulation in durum wheat grain based on soil geochemical properties related to Cd availability in French agricultural soils with low Cd contents and neutral to alkaline pH (soils commonly used to grow durum wheat). The best model is based on the concentration of total Cd in the soil solution, the pH of a soil CaCl2 extract, the cation exchange capacity (CEC), and the content of manganese oxides (Tamm’s extraction) in the soil. The model variables suggest a major influence of cadmium buffering power of the soil and of Cd speciation in solution. The model successfully explains 88% of Cd variability in grains with, generally, below 0.02 mg Cd kg?1 prediction error in wheat grain. Monte Carlo cross-validation indicated that model accuracy will suffice for the European Community project to reduce the regulatory limit from 0.2 to 0.15 mg Cd kg?1 grain, but not for the intermediate step at 0.175 mg Cd kg?1. The model will help farmers assess the risk that the Cd content of their durum wheat grain will exceed regulatory limits, and help food safety authorities test different regulatory thresholds to find a trade-off between food safety and the negative impact a too strict regulation could have on farmers.

  相似文献   

7.
Simple screening models of NAPL dissolution in the subsurface   总被引:1,自引:0,他引:1  
Three simple screening models of nonaqueous phase liquid (NAPL) dissolution in the subsurface are proposed based on the NAPL mass conservation and the assumption of proportionality between the residual NAPL source zone concentration and the remaining residual NAPL mass. The purpose of the proposed models is to predict the solute concentration in the zone of the residual NAPL as a result of dissolution. The predicted source zone concentration decrease is used to simulate and account for the decrease of dissolution rate with time. The proposed simple NAPL dissolution models enable the pseudo-equilibrium formulation to be used and therefore the numerical simulations for field application problems can be simplified compared to the non-equilibrium counterpart. With proper choice of empirical parameters, the proposed simple screening models can work as well as more complex dissolution rate correlation models, such as that of Imhoff et al. [Water Resour. Res. 30 (1994) 307-320]. It is found that the proposed models are very good for quantifying non-equilibrium dissolution, which is characterized by tailing of breakthrough curves. The models are especially useful for situations of small residual NAPL saturation, which are typical for many field applications.  相似文献   

8.
Environmental Science and Pollution Research - Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the...  相似文献   

9.
Flux density values, computed from observed infiltration and outflow measurements at 184 locations in a 0.3-m-thick, 9m × 23m layer of compacted clay subsoil, are compared to effective flux density values that are based on breakthrough time distributions for water and Br tracer over the same area. Results suggest that both water and tracer move at similar rates, but considerably faster than expected, on the basis of flux density alone, and that only a small fraction of the total pore space is involved in active transport. The ramifications of these findings are explored against the background of effective porosity, degree of compaction, and observed changes in bulk density with time.  相似文献   

10.
Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.  相似文献   

11.
A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.  相似文献   

12.
《Environmental Forensics》2013,14(4):319-329
Accidental spills and chronic leaks of fuel oil or other hydrocarbon material (e.g., coal tar) often result in subsurface accumulation of nonaqueous phase liquid (NAPL), which can be a subsequent source of contamination in groundwater. Linking hydrocarbons in groundwater to a source NAPL has been difficult when using standard target analytes (e.g., BTEX) because of differences in partitioning properties of the analytes between the source NAPL and groundwater. Because aqueous solubility is predicted to be the controlling influence in the partitioning of hydrocarbons from NAPL to groundwater, a solubility-based approach to matching dissolved hydrocarbons in groundwater to their source NAPL has been developed and validated for two sites with commonly encountered types of NAPL contamination. Specifically, a gasoline LNAPL and a coal tar DNAPL from two separate sites (West Virginia and California) and groundwater interfaced with these NAPLs were analyzed for approximately 50 gasoline-range hydrocarbons consisting of paraffin, isoparaffin, (mono-) aromatic, naphthene, and olefin compounds (PIANO). Solubility characteristics of selected alkyl aromatic hydrocarbons from the PIANO analysis were used to identify a set of diagnostic hydrocarbons, expressed as hydrocarbon ratios, which were found to be useful in distinguishing the source(s) of hydrocarbons in groundwater. At the West Virginia site, the diagnostic ratios in a downgradient groundwater sample were similar to those of a gasoline NAPL at that site, indicating the source of hydrocarbons to the groundwater was the upgradient gasoline NAPL. The diagnostic ratios of the groundwater in contact with the gasoline NAPL and the remote groundwater were also similar, providing evidence that the diagnostic ratios were retained during transport in the aquifer. At the California site, diagnostic ratios in a cross-gradient groundwater sample differed from those of the coal tar NAPL at that site, indicating that the remote groundwater hydrocarbons did not originate from the coal tar contamination. Environmental factors such as selective degradation of specific isomers and various geological conditions (e.g., soil mineralogy, and organic content) may confound the application of this solubility-based fingerprinting approach. Thus, it is recommended that multiple diagnostic pairs be simultaneously evaluated when considering this fingerprinting approach for specific sites and product types.  相似文献   

13.
Soil heating has been proposed as a method to enhance the vapor extraction of NAPLs from contaminated soils. Three-dimensional fluid flow and heat transfer simulations have been performed for soil-heated vapor extraction to determine the transient system performance for a hypothetical configuration. Soil layering has been considered in evaluation of the initial non-aqueous phase liquid (NAPL) distribution and in evaporation and transport to the vapor extraction location. Results from this layered model are compared with results for a homogeneous system with an initially uniform NAPL, indicating the influence of layering, the initial NAPL distribution, the type of NAPL, and the possibility of enhanced vapor diffusion. Not only is the NAPL removal time reduced significantly with the addition of heat, but the uncertainty in the removal time owing to a number of difficult to characterize in situ factors, such as layering and the initial NAPL distribution, is much less than for standard soil vapor extraction without heating, owing to the rise in temperature and increase in NAPL vapor pressure with time.  相似文献   

14.
Three-dimensional reactive transport simulations were undertaken to study the sorption and degradation dynamics of three herbicides in a shallow aerobic aquifer with spatially variable pH during a 216 days injection experiment. Sorption of two phenoxy acids [(+/-)-2-(4-chloro-2-methylphenoxy) propanoic acid] (MCPP) and [(+/-)-2-(2,4-dichlorophenoxy)propanoic acid] (dichlorprop) was found to be negligible. Degradation of the phenoxy acids was rapid after an initial lag phase. Degradation of the phenoxy acids could only be reproduced satisfactorily by growth-linked microbial degradation. The model fit to the field data was slightly improved if degradation was assumed to be influenced by the local pH that was observed to increase with depth ( approximately 4.5--5.7). In the observed pH-range the nitroaromatic herbicide [2-Methyl-4,6-dinitrophenol] (DNOC) was partly dissociated (pK(a)=4.31) and present in both the neutral and ionized form. The model simulations demonstrated that most of the observed spatial variation in sorption of DNOC could be explained by assuming that only the neutral form of DNOC was subject to sorption. A varying flow field was observed during the injection experiment and the model simulations documented that this most likely resulted in different migration paths for DNOC and the non-sorbing solutes. The model simulations indicated that degradation of DNOC was an important process. The degradation rate of DNOC remained constant over time and was simulated adequately by first-order kinetics. Again, the model fit to field observation was slightly improved if local pH was assumed to influence the degradation rate. Only the maximum utilization rate was estimated from the field data, while the remaining degradation parameters where successfully transferred from the laboratory study.  相似文献   

15.
Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85 % ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7–9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p?Eisenia fetida followed by ethanol-blended gasoline (LC50 1,643 mg/kg THC) and conventional diesel (LC50 2,432 mg/kg THC), although gasoline evaporated fast from soil. For comparison, the toxicity of the water-accommodated fractions (WAF) of the fuels was tested with water flea Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.  相似文献   

16.
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.  相似文献   

17.
This paper presents the results of a field investigation in the unsaturated, fractured welded tuff within the Exploratory Studies Facility (ESF) at Yucca Mountain, NV. This investigation included a series of tests during which tracer-laced water was released into a high-permeability zone within a horizontal injection borehole. The tracer concentration was monitored in the seepage collected in an excavated slot about 1.6 m below the borehole. Results showed significant variability in the hydrologic response of fractures and the matrix. Analyses of the breakthrough curves suggest that flow and transport pathways are dynamic, rather than fixed, and related to liquid-release rates. Under high release rates, fractures acted as the predominant flow pathways, with limited fracture-matrix interaction. Under low release rates, fracture flow was comparatively less dominant, with a noticeable contribution from matrix flow. Observations of tracer concentrations rebounding in seepage water, following an interruption of flow, provided evidence of mass exchange between the fast-flowing fractures and slow- or non-flowing regions. The tests also showed the applicability of fluorinated benzoate tracers in situations where multiple tracers of similar physical properties are warranted.  相似文献   

18.
Air pollution plant exposure experiments sometimes involve registration of several plant variables (dependent variables) as a function of several treatment variables (independent variables). Both independent and dependent variables might be correlated, and the number of variables might exceed the number of observations. Analyzing one variable at a time gives a risk of spurious results. The multivariate statistical methods, soft independent modelling of class analogy (SIMCA) and partial least squares modelling with latent variables (PLS) allow all variables to be analyzed simultaneously. These methods are presented and applied to data from open-top chamber experiments with O3, SO2, and NO2 fumigation of three varieties of Lolium multiflorum Lam. The results demonstrate the dependence of the plant response to plant variety, plant age, climate, and pollutant dosages.  相似文献   

19.
Statistical analysis of regulatory ecotoxicity tests.   总被引:10,自引:0,他引:10  
ANOVA-type data analysis, i.e.. determination of lowest-observed-effect concentrations (LOECs), and no-observed-effect concentrations (NOECs), has been widely used for statistical analysis of chronic ecotoxicity data. However, it is more and more criticised for several reasons, among which the most important is probably the fact that the NOEC depends on the choice of test concentrations and number of replications and rewards poor experiments, i.e., high variability, with high NOEC values. Thus, a recent OECD workshop concluded that the use of the NOEC should be phased out and that a regression-based estimation procedure should be used. Following this workshop, a working group was established at the French level between government, academia and industry representatives. Twenty-seven sets of chronic data (algae, daphnia, fish) were collected and analysed by ANOVA and regression procedures. Several regression models were compared and relations between NOECs and ECx, for different values of x, were established in order to find an alternative summary parameter to the NOEC. Biological arguments are scarce to help in defining a negligible level of effect x for the ECx. With regard to their use in the risk assessment procedures, a convenient methodology would be to choose x so that ECx are on average similar to the present NOEC. This would lead to no major change in the risk assessment procedure. However, experimental data show that the ECx depend on the regression models and that their accuracy decreases in the low effect zone. This disadvantage could probably be reduced by adapting existing experimental protocols but it could mean more experimental effort and higher cost. ECx (derived with existing test guidelines, e.g., regarding the number of replicates) whose lowest bounds of the confidence interval are on average similar to present NOEC would improve this approach by a priori encouraging more precise experiments. However, narrow confidence intervals are not only linked to good experimental practices, but also depend on the distance between the best model fit and experimental data. At least, these approaches still use the NOEC as a reference although this reference is statistically not correct. On the contrary, EC50 are the most precise values to estimate on a concentration response curve, but they are clearly different from the NOEC and their use would require a modification of existing assessment factors.  相似文献   

20.
During soil bioremediation, the diffusion of oxygen into the soil is an important prerequisite for aerobic biodegradation, and the decrease of petroleum products is the ultimate goal. Both processes need to be monitored. The aim of this work was to develop a gas tracer test that yields information on both, gas diffusion and residual saturation with non-aqueous phase liquids (NAPLs) in unsaturated soil heaps. One conservative tracer (methane) and 4 partitioning gas tracers (diethylether, methyl tert-butyl ether, chloroform and n-heptane) were injected as vapors into laboratory columns filled with unsaturated sand with increasing NAPL saturation. Breakthrough curves of gaseous compounds were measured at two points and compared to analytical solutions of an analytical diffusive-reactive transport equation. By fitting of methane data, robust results for effective diffusivity (tortuosity) were obtained. NAPL saturation was most accurately measured by the moderately water soluble tracers (ethers and chloroform). The hydrophobic tracer n-heptane did not partition into water-immersed NAPL. An easy and accurate way to assess air-NAPL partitioning constants from gas chromatography retention times is furthermore reported. It is concluded that gas tracer tests have the potential for measuring two important properties in soil bioremediation systems easily and quickly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号