首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hog concentrated animal feeding operations (CAFOs) release ammonia (NH3) in Eastern North Carolina (NC) to the atmosphere which is potentially hazardous for nearby human populations at community locations particularly homes and schools. We present NH3 weekly average concentrations that were collected using passive diffusion tubes from October 2003 to May 2004 (20 sites) and from July 2004 to October 2004 (23 sites) near community locations in close proximity to hog CAFOs. The data for each phase of sampling was stratified by distance from the nearest hog CAFO. The mean Phase I levels were 16, 8, 7 and 5 ppb for distances <0.5, 0.5–1, 1–2, and 2 km or more, respectively. The mean levels for Phase II were 29, 16, and 11 ppb for distances <0.5, 0.5–1, and 1 km or more, respectively. The results of the distance stratification are the best results of this study and provide the strongest evidence that distance to one or more CAFOs is the key variable in controlling weekly NH3 atmospheric concentration at the community level in Eastern NC. Statistical analyses confirmed that source terms such as distance to a hog CAFO and live weight per operation, as well as temperature, wind speed and wind direction were important predictors of atmospheric NH3 at community locations. The results indicate potential zones of exposure for human populations who live or go to school near hog CAFOs.  相似文献   

3.
Hog concentrated animal feeding operations (CAFOs) in North Carolina release ammonia (NH3), hydrogen sulfide, VOCs, and particulate matter to the atmosphere. These operations are located mainly in the NC coastal plain and can create potential health hazards for nearby human populations. Limited work has been performed to measure NH3 at the community level to assess potential human exposure. In an effort to address this issue, a study was designed to measure NH3 levels near hog CAFOs and community locations (i.e. homes and schools) in Eastern NC.NH3 was collected using passive diffusion tubes in triplicate exposed primarily in weekly intervals. Sampling occurred from October 2003 to May 2004 (20 sites) and from July 2004 to October 2004 (23 sites) at varying distances from hog CAFOs in close proximity to homes and schools. Average weekly NH3 levels were measured as mass (μg NH3-N) and converted to concentration (ppb). Mean level of 13.8 ppb near homes and schools (<2 km) was 4–12 times greater than ambient background levels (1–3 ppb), reaching as high as 80 ppb. Exposed sites (<2 km from a hog CAFO) had a mean level of 12.8 ppb which was over 2 times higher than the mean level of 5.5 ppb at less exposed sites (>2 km from a hog CAFO).The study establishes that passive sampling can be effectively used to measure average atmospheric ammonia levels at community locations near hog CAFOs in Eastern NC. The collected data indicate the relative exposure for human populations who live near a hog CAFO. The closer a populace is to the hog CAFO, the more intense the exposure. These results require more validation in the field by comparison to a reference method.  相似文献   

4.
Odor emissions during manure spreading events have become a source of concern, particularly where farms are located nearby urban areas. The objective of the present study was to compare odor concentrations and odor emission rates due to pig manure application using two different types of applicators, a sub-surface deposition system and a conventional splash-plate applicator. Air samples were collected using a Surface Isolation Flux Chamber and the "bag-in-vacuum chamber" techniques, at 0.5, 1.5 and 2.5 hours after manure application. A three-station forced-choice dynamic dilution olfactometer was used by an odor panel for determining odor concentration. Preliminary results indicated that with the sub-surface deposition system applicator odor emission rate was reduced by 8% to 38% compared to that of the conventional splash-plate applicator. The highest reduction in odor strength and odor emission rate was observed in the most offensive period after manure application. The sub-surface deposition system may be a solution for hog producers who wish to reduce odor complaints from applying manure without the cost and problems associated with deep injection systems.  相似文献   

5.
To correlate the odor strength of natural gas with its sulfur analysis, the recognition odor thresholds of 18 sulfur compounds were determined using an untrained panel of 35 peopie. For each test a series of odor concentrations graduated in increments of 100.2 was presented to the panel in random order over a range of concentrations above and below the olfactory thresholds of all panelists. Each odor was tested on at least three different days. Desired odor concentrations were produced by dynamic blending of gaseous mixtures of the odorous compounds with air. All testing was done out-of-doors during clement weather when no ambient odors were apparent. The range of olfactory response was found to be much greater for certain compounds than for others. Branching of the hydro-carbon chain increased odor strength. Certain compounds appeared to evoke anomalous responses.  相似文献   

6.
To evaluate the major odors affecting a community, approximately 120 high school students recorded odor observations. Simultaneous odor observations were made three times daily for 14 consecutive days each in a fall and spring survey. The observers were tested for olfactory sensitivity, and population characteristics were recorded for analyses of the human variables. These data were analyzed to show the areas most severely affected, the major objectionable odor types, the time when odors were most frequent, and the associated weather parameters. A critique of the procedures employed and the results of the survey are presented.  相似文献   

7.
Biofilter technology has been applied recently to treating rendering odors. Soil beds are one class of biofilter but as yet have not been used for this application. Although wet scrubbers have been a traditional method of odor control, their capital and operating costs are impacting more severely. Soil bed systems are less expensive to install and operate.

A soil bed system was installed at a rendering plant in Arizona and has been in operation since September 1983. The soil bed treats 1100 m3/h (650 cfm) of cooker noncondensables with a surface area of 420 m2(4500 ft2). The pressure drop across the soil bed is 5 cm (2 in.) of water. Odor sensory testing with the MTRI forced-choice triangle dynamic olfactometer indicates an odor removal efficiency of 99.9 percent is obtained with the soil bed. Soil bed odor removal efficiency is equivalent to or superior than that for incineration or scrubbing of high intensity odors from the rendering process. Recent experience during this past winter indicates a soil bed is a viable method for operation in a northern climate with severe winter weather conditions. Also, monitoring of the leachate from a soil bed indicated no contamination.  相似文献   

8.
Abstract

Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC‐odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ‐I model and a MJ‐II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ‐I model, manure moisture movement was negligible, whereas in the MJ‐II model, time‐dependent indoor air concentrations was a function of constant manure moisture contents and steady‐state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC‐odors of p‐cresol, toluene, and p‐xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ‐I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.  相似文献   

9.
An odor of unknown origin described as a “tar” or “asphalt” smell has become unbearable for many of Globeville, CO, residents over the past few years. Residents report during odor events burning eyes and throat, headaches, skin irritation, and problems sleeping. This study was undertaken to identify the potential sources of the odor and the concentrations of air pollutants making up the odor by conducting meteorological correlations and sampling for a panel of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the neighborhood and near suspected sources. Wind speed and direction data collected every 1 min in the neighborhood indicate that when the odor is noticed, the community is directly downwind of a wood preservation facility and an asphalt roofing facility. Air samples collected during high-intensity odor events have shown concentrations of methylene chloride, hexane, toluene, naphthalene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, each at least two times higher than background concentrations. Naphthalene and the other PAHs are known pollutants emitted from wood treatment processes, and are known to have a coal tar odor. Naphthalene was present in a sample collected directly adjacent to the Koppers facility and was not present in any background samples. Single-compound odor and health thresholds, however, were never surpassed. Given the technical and regulatory challenges of sampling odors and controlling emissions, it is recommended that Globeville residents and neighboring industry pursue a “good neighbor policy” to solve the odor issue. Specific offending industrial processes could be identified for which there exist cost-effective control technologies that would reduce exposure to odors and air toxics in Globeville.

Implications: Meteorological correlations and samples of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the Globeville, CO, neighborhood and near suspected sources during odor events indicate potential industrial sources of a transient and noxious odor. Legislative approaches have proven unfruitful and no health or odor thresholds were typically violated. New approaches are warranted to address odor mixture effects in neighborhoods near industrial facilities.  相似文献   

10.
The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry's law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85-90 degrees F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

11.
In the past several years the use of cattle feeding lots for preparing cattle for market has developed into a large industry. These installations extend over much of the United States. Our lot, just outside of Memphis, Tennessee, is at present the only one in the area, but we feel that there will be others soon.

The control of odor in the cattle feeder industry is necessary if the operator does not wish to become the target of a nuisance or injunction suit. In one recent trip extending to Texas, then to California and back, numerous lots were inspected and this paper will present various types of odor control measures which were observed. The problem is one which can be controlled, but it is primarily dependent upon the willingness on the part of management to make the effort.

As a by-product of the cattle feeder lot, large quantities of manure are obtained and unless measures are taken to properly store this material, considerable odor can result. We believe that the use of dehydration in connection with the feeder lot will become more and more necessary, and it is our experience that this type of operation requires: 1. Good design of the dehydrating unit, 2. Careful control of the product flow, 3. An understanding of the proper method for storing the manure prior to its dehydration, and 4. Use of odor control methods to keep down those odors which would constitute nuisance to those living nearby. Various methods of odor control will be discussed.  相似文献   

12.
Abstract

The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry’s law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85–90 °F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

13.
Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.  相似文献   

14.
Abstract

This paper reports on research designed to investigate the capacities of different highly characterized peats to remove odorous compounds from liquid swine manure (LSM). Peat types representing a wide range of properties were tested in order to establish which chemical and physical properties might be most indicative of their capacities to remediate odors produced by LSM. Eight percent slurries (of peat/LSM) were measured for odor changes after 24 hours using odor panel and GC/MS‐Solid‐phase microextraction (GC/MS‐SPME) analysis.

The GC/MS‐SPME and odor panel results indicated that, although all peats tested in this study were found to be effective at removing odor‐causing compounds found in LSM, some peats tended to work better than others. Overall, the peats that were the most effective at removing odor‐causing compounds tended to have lower bulk densities, ash contents, fulvic acids contents, and guaiacyl lignins contents,and higher water holding capacities, hydraulic conductivities, “total other lignins”; contents, hydrogen contents, carbon contents, and total cellulose contents.

GC/MS‐SPME analysis was found to be a reasonably inexpensive and efficient way of conducting this type of research. It allows one to identify a large number of the odor‐causing compounds found in LSM, and more importantly, to detect with some precision specific differences in the amounts of these compounds between peat types.  相似文献   

15.

Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.  相似文献   

16.
17.
18.
Emissions from feedlot operations are known to vary by environmental conditions and few if any techniques or models exist to predict the variability of odor emission rates from feedlots. The purpose of this paper is to outline and summarize unpublished reports that are the result of a collective effort to develop industry-specific odor impact criteria for Australian feedlots. This effort used over 250 olfactometry samples collected with a wind tunnel and past research to develop emission models for pads, sediment basins, holding ponds, and manure storage areas over a range of environmental conditions and tested using dynamic olfactometry. A process was developed to integrate these emission models into odor dispersion modeling for the development of impact criteria. The approach used a feedlot hydrology model to derive daily feedlot pad moisture, temperature, and thickness. A submodel converted these daily data to hourly data. A feedlot pad emissions model was developed that predicts feedlot pad emissions as a function of temperature, moisture content, and pad depth. Emissions from sediment basins and holding ponds were predicted using a basin emissions model as a function of days since rain, inflow volume, inflow ratio (pond volume), and temperature. This is the first attempt to model all odor source emissions from a feedlot as variable hourly emissions on the basis of climate, management, and site-specific conditions. Results from the holding pond, sediment basin, and manure storage emission models performed well, but additional work on the pad emissions model may be warranted. This methodology mimics the variable odor emissions and odor impact expected from feedlots due to climate and management effects. The main outcome of the work is the recognition that an industry-specific odor impact criterion must be expressed in terms of all of the components of the assessment methodology.  相似文献   

19.
Offensive exhaust odors are characteristic of diesel engines. One problem in control and reduction of odor is lack of understanding of odorant sources and mode of formation. The solution of this problem depends on identification of the odorants so that study of their formation and control can be undertaken. A human panel performed odor assessments in studying raw and modified diesel exhaust and synthetic blends representing portions of diesel exhaust. Their assessments were used in determining odorant identity and quantitative contribution to exhaust odor. Low molecular weight aldehydes appear to contribute little to diesel odors. The sulfur and nitrogen oxides have been examined as odorants but of these apparently only nitrogen dioxide is a potential odor contributor.  相似文献   

20.
Biofilters are becoming an increasingly popular treatment device for odors and other volatiles found at wastewater treatment plants. A seashell media based biofilter was installed in April 2011 at Lake Wildwood Wastewater Treatment Plant located in Penn Valley, California. It was sampled seasonally to examine its ability to treat odorous compounds found in the air above the anaerobic equalization basin at the front end of the plant and to examine the properties of the biofilter and its recirculating water system. The odor profile method sensory panels found mainly sulfide odors (rotten eggs and rotten vegetable) and some fecal odors. This proved to be a useful guidance tool for selecting the required types of chemical sampling. The predominant odorous compounds found were hydrogen sulfide, methyl mercaptan and dimethyl sulfide. These compounds were effectively removed by the biofilter at greater than 99% removal efficiency therein reducing the chemical concentrations to below their odor thresholds. Aldehydes found in the biofilter were below odor thresholds but served as indicators of biological activity. Gas chromatography with mass spectrometry and gas chromatography with sensory detection showed the presence of dimethyl disulfide and dimethyl trisulfide as well, but barely above their respective odor thresholds. The neutrality of the pH of the recirculating water was variable depending on conditions in the biofilter, but a local neutral pH was found in the shells themselves. Other measurements of the recirculating water indicated that the majority of the bio-activity takes place in the first stage of the biofilter. All measurements performed suggest that this seashell biofilter is successful at removing odors found at Lake Wildwood. This study is an initial examination into the mechanism of the removal of odorous compounds in a seashell biofilter.

Implications:?This paper presents a thorough examination of a seashell media biofilter, a sustainable treatment technology used to remove reduced sulfide compounds. The durable performance of the seashell biofilter ensures that odors will be adequately controlled, preventing odor nuisance to surrounding residences, which is an emerging problem faced by waste management facilities. The odor profile method technique used in this study can be applied in many situations by waste management facilities and regulatory air management organizations for source tracking in relation to prevention and management of odor complaints, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号