首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
刘子刚  王铭  马学慧 《中国环境科学》2012,32(10):1814-1819
根据全国泥炭资源调查的结果, 运用有机质含量、干容重、泥炭储量、泥炭地面积等数据估算中国泥炭地有机碳储量,并探讨其碳储存特征.结果表明,我国泥炭地有机碳总储量约15.03亿t.在各省和各气候区分布不均匀,四川省(6.45亿t)和云南省(2.91亿t)泥炭地有机碳储量最丰富,占总储量的62.29%.各气候区中高原湿润区泥炭地有机碳储量最大(7.14亿t),特别是若尔盖高原泥炭地有机碳储量(6.30亿t)占总储量的41.92%.我国泥炭地有机碳密度一般在80~140kg/m3, 最大值为270~360kg/m3,最小值小于80kg/m3,其分布以燕山、太行山至横断山为界,西北部低,东南部高.泥炭地单位面积有机碳储量均值为143.97kg/m2,滇南高原最高,达到637.06kg/m2.区域平均泥炭地有机碳积累强度为208.23 t/km2,若尔盖高原最高达3972.71t/km2.  相似文献   

2.
植被恢复对侵蚀型红壤碳吸存及活性有机碳的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
依托江西水土保持生态科技园,研究了侵蚀型红壤退化裸地恢复为百喜草地、柑橘果园和湿地松林后,0~100 cm深度范围内不同土层(0~10、>10~20、>20~40、>40~70和>70~100 cm)中w(TOC)(TOC为总有机碳)以及表层(0~40 cm)土壤中活性有机碳组分含量的变化. 结果表明:①退化裸地土壤中w(TOC)和有机碳库储量分别仅为4.73 g/kg和48.41 t/hm2,均处于较低水平,w(TOC)的垂直分布特征也不明显;恢复为百喜草地和柑橘园后,w(TOC)分别增至7.08和7.69 g/kg,有机碳库储量分别增至55.09和70.78 t/hm2,并且植被恢复对表层土壤中w(TOC)影响显著,而对深层(>40 cm)土壤影响有限. ②以退化裸地为对照,百喜草地和柑橘果园土壤碳吸存量分别为6.68和22.36 t/hm2,平均碳吸存速率分别为0.51和1.72 t/(hm2·a);以保存较好的湿地松林为参照,退化裸地、百喜草地和柑橘果园土壤碳吸存潜力分别为23.71、17.03和1.34 t/hm2,说明严重侵蚀地的碳吸存潜力巨大. ③侵蚀型红壤退化裸地的植被恢复可积极促进表层土壤中DOC(水溶性有机碳)、MBC(微生物生物量碳)和POC(颗粒有机碳)的积累,同时该影响存在表聚效应,即植被恢复后土壤表层中活性有机碳组分含量在w(TOC)中所占比例增大.   相似文献   

3.
陆地生态系统的固碳功能对于全球碳循环具有重要意义,而不同的陆地生态系统的有机碳分布特征又不尽相同。文章以湖北宜城市4种陆地生态系统为研究对象,分析了不同生态系统植被和土壤碳库的有机碳储量和碳密度空间特征,讨论了有机碳分布的影响因素。结果表明:(1)宜城市植被碳密度较低,乔木层碳密度为4.44 t/hm2(以C计,下同),碳储量为2.22×105t。草灌层在不同陆地生态系统中的有机碳分布各不相同,草灌层在森林生态系统中的有机碳密度为2.88 t/hm2,碳储量为1.43×105t,在草原生态系统中的有机碳密度为7.79 t/hm2,碳储量为1.1×104t,在湿地生态系统中的有机碳密度为20.84 t/hm2,碳储量为3.4×104t。(2)宜城市土壤有机碳的平均含量5.5 g/kg,1 m以上土壤平均密度为66.77 t/hm2,有机碳储量为1.13×107t。0~20...  相似文献   

4.
江汉平原农田土壤有机碳分布与变化特点:以潜江市为例   总被引:8,自引:2,他引:6  
以地处江汉平原腹地的潜江市农田土壤(水田、旱地)为研究对象,于2011年实地采样分析表层土壤(0~20 cm)有机碳的分布现状,并对比第二次土壤普查(1983年)资料,探讨28 a来江汉平原农田土壤有机碳的分布与变化特点.结果表明,2011年潜江市农田表层土壤有机碳密度为30.50 t·hm-2,碳储量为452.82×104t,与1983年相比有明显下降,下降速率分别为0.10 t·(hm2·a)-1和1.53 t·a-1,碳储量共损失了9%.两个时期水田土壤有机碳密度均明显高于旱地土壤,分别是旱地土壤的1.6倍和1.3倍,但是经过28年的常规耕作管理,水田土壤有机碳密度呈下降趋势,下降速率为0.23 t·(hm2·a)-1,导致的有机碳损失为52.83×104t,损失比例达16%;而旱地土壤有机碳则以0.05 t·(hm2·a)-1的速率缓慢增长,碳储量共增加了8.57×104t,增加比例为5%,远不能抵消水田土壤的有机碳损失.水田土壤碳储量的损失主要来自于低产潜育型水稻土碳密度的大幅下降所致(尽管其所占面积比例较小),其碳损失量占水田碳损失量的比例达80%;其次为占水田面积比例最大的潴育型水稻土,其碳损失量占水田碳损失量的15%.旱地土壤碳储量增长缓慢,完全来自于面积占96%的灰潮土有机碳密度的增长.因此,江汉平原区水田土壤有机碳的变化决定了农田土壤有机碳的整体动向,今后需着力提升有机碳下降迅速的低产水田以及面积较大的土壤类型的有机碳积累和固持能力.  相似文献   

5.
选取2003年、2017年杭州湾南岸遥感数据,利用ENVI软件和ArcGIS进行空间校正和图像处理,获得海岸带湿地数据,基于InVEST模型研究杭州湾南岸15年间滩涂湿地蓝碳及其价值的变化.结果显示:(1)2003~2017年总碳储存量和单位面积碳储量最大值均呈上升趋势,总碳储存量由0.223亿t上升到0.765亿t,增加0.542亿t.单位面积碳储量最大值也由451.27t/hm2上升到1775.42t/hm2,湿地碳汇潜力增加.(2)2003~2017年研究区域无碳损失,总体表现为碳积累,蓝碳总量为0.543亿t,单位面积净碳固定最大值为1324.12t/hm2.(3)2003~2017年15年间杭州湾南岸海岸蓝碳总价值为4761.3亿元,单位面积蓝碳最大值为148.8万元,具有十分可观的生态价值.(4)滩涂蓝碳的储量同植被类型关系密切,研究区域芦苇作为优势种类,在提高本区域固碳能力中作用最大.(5)在预设的退塘还湿情景下,预测至2030年研究区固碳量和蓝碳价值增加明显.  相似文献   

6.
亚热带不同稻田土壤微生物生物量碳的剖面分布特征   总被引:8,自引:2,他引:6  
盛浩  周萍  袁红  廖超林  黄运湘  周清  张杨珠 《环境科学》2013,34(4):1576-1582
土壤微生物生物量碳是稻田土壤有机质最具活性的组分之一,可有效地指示土壤质量状况.为探明亚热带地区不同类型稻田土壤微生物生物量碳的剖面分布特征及其与土壤有机碳及养分的关系,通过选取5种不同母质发育的稻田土壤,采集土壤发生层次分层样品,分析其有机碳、微生物生物量碳以及土壤养分的分布特点.结果表明,土壤有机碳和微生物生物量碳含量均随土壤深度的加深而急剧下降,分别介于2.45~26.19 g.kg-1和4.55~1 691.75 mg.kg-1,以耕作层和犁底层的含量最为丰富.不同母质发育的稻田表层土壤微生物生物量碳含量存在显著差异,以板岩风化物发育的黄泥田Ⅰ最高,河沙泥和红黄泥最低;而有机碳含量却以红黄泥和河沙泥最高,其余几种土壤之间并无明显差异.尽管如此,土壤微生物生物量碳依然受有机碳数量的限制,两者呈显著的正相关关系.土壤微生物商亦随土壤深度的增加而明显降低,不同类型土壤耕作层微生物商以河沙泥(2.11%)和红黄泥(1.37%)相对最低,而板岩风化物发育的黄泥田Ⅰ最高(8.24%),说明河沙泥和红黄泥的底物有效性明显低于黄泥田,这也是河沙泥和红黄泥有机碳含量最高而微生物生物量最低的原因之一.土壤微生物生物量碳含量与土壤全氮、碱解氮和有效磷呈显著的正相关关系,而与土壤速效钾的相关性不明显,说明稻田土壤微生物生物量碳除受有机碳的限制外,还与土壤养分存在较为复杂的关系.  相似文献   

7.
张晓伟  许明祥 《环境科学》2013,34(7):2793-2799
以武功县为例,通过计算农田土壤碳储量及固碳速率,明确关中地区农田土壤有机碳动态变化的规律,进而揭示农田土壤有机碳与自然因素、人为因素的关系.结果表明:①80%的样点0~20 cm农田土壤有机碳含量在8.0~12.0 g.kg-1之间,总体上呈现正态分布.②武功县2011年0~20 cm农田土壤有机碳密度为26.3 t.hm-2,低于全国农田耕层土壤有机碳密度平均水平(33.45 t.hm-2).近30年农田土壤固碳速率为71.3 kg.(hm2.a)-1,近5年农田土壤固碳速率为480 kg.(hm2.a)-1,近期固碳速率高于全国农田耕层土壤平均固碳速率[380.78 kg.(hm2.a)-1].③在半湿润平原地区,土壤有机碳含量主要受土壤类型、地貌类型、有机肥投入的影响,其中土壤类型可解释30.2%的有机碳变异性,地貌类型可解释37.7%,有机肥可解释32.1%.综合分析表明,武功县农田土壤有机碳密度在过去30 a间呈增加趋势,这可能与化肥的施用和秸秆还田有关,具体有多大的影响程度还需进一步研究.  相似文献   

8.
为揭示秸秆源黑炭连续还田对太湖平原稻麦轮作农田土壤生产力和固碳作用的影响,设黑炭施加量为0(CK)、4.5和9.0t/hm23个处理,通过2a 4个完整稻麦轮作季的盆栽试验,研究了稻秆来源黑炭每季还田下的稻麦作物产量.养分吸收状况及土壤理化性质的变化. 结果显示,土壤w(TOC)(TOC为总有机碳)和w(全N)随黑炭施加量的增加而增加. 每季黑炭施加量为9.0t/hm2时,土壤w(TOC)和w(全N)可分别提高46.7%~113.0%和9.3%~28.3%. 黑炭施入土壤后能够提高稻麦作物地上部分生物量,籽粒产量增加11.4%~60.5%,秸秆产量增加15.0%~56.8%. 黑炭处理下稻麦作物体内N、P、K、Mg和Ca的累积量显著提高,这一现象与每季结束后土壤w(全N)以及土壤有效元素含量〔w(有效P)、w(有效K)、w(有效Mg)和w(有效Ca)〕的增加相吻合. 黑炭施入可显著提高土壤pH和CEC(阳离子交换量),尤其是黑炭施加量为9.0t/hm2时,pH最高可达6.79,CEC最高达到12.7cmol/kg. 连续三季施入黑炭后,土壤容重比不施黑炭处理降低8.0%~12.2%. 试验结果表明,秸秆来源黑炭施入太湖平原稻麦农田可起到固碳增汇、增加土壤碳库容量的作用,也能改善土壤理化性质,提高土壤生产力.   相似文献   

9.
印江槽谷型喀斯特地区植被碳储量及固碳潜力研究   总被引:1,自引:0,他引:1  
以印江槽谷型喀斯特石漠化地区11种植被类型(人工纯林、人工混交林、天然纯林、天然混交林、疏林、竹林、经果林、灌木林、石山地、宜林地、草地)为研究对象,分析了植被碳储量的空间分布格局,并对区域植被固碳速率、碳储量进行了估算,并预测了理论最大固碳潜力。结果表明:印江研究区植被碳储量空间分布为,乔木层(25.06t/hm2)灌木层(3.51t/hm2)草本层(1.10t/hm2),其平均固碳速率为10.63t/(hm2·a),植被碳储量为172.23×103 t,植被理论最大固碳潜力为94.02t/hm2。研究结果对于评价和估计印江槽谷型喀斯特石漠化地区森林的碳汇功能,以及提高碳储量有重要意义。  相似文献   

10.
人类活动背景下,氮(N)沉降持续影响着生态系统的碳循环.氮沉降对土壤有机碳的影响与不同碳组分的差异性响应有关.为探究短期氮沉降背景下土壤有机碳组分变化及其影响因素,基于野外氮添加试验,以刺槐人工林为研究对象,共设置4个氮添加梯度:0(CK)、1.5(N1)、3(N2)和6(N3) g·(m2·a)-1,分别在6月和9月进行取样,测定土壤理化性质、微生物生物量和酶活性.结果表明:(1)外源氮输入降低了土壤pH,促进可溶性有机碳含量的增加,增加了土壤氮素有效性.(2)短期氮添加显著降低了土壤有机碳含量,且有机碳各组分对氮添加响应不同.其中,易氧化有机碳含量显著降低,且在N2处理下达到最低,与对照相比分别降低了54.4%和48.2%,惰性有机碳含量增加,但增加不显著.氮添加降低了土壤碳库活度,提高了土壤碳库的稳定性.土壤碳库活度分别在N3和N2处理下达到最低,与对照相比分别降低了53.3%和52.80%.(3)随机森林模型表明,短期氮添加下土壤微生物生物量化学计量比、微生物生物量碳和AP是驱动土壤有机碳活度变化的关键因子,分别解释了易氧化有机碳和惰...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号