首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activity concentrations of natural uranium isotopes (238U and 234U), thorium isotopes (232Th, 230Th and 225Th) and 226Ra were studied in soil and vegetation samples from a disused uranium mine located in the Extremadura region in the south-west of Spain. The results allowed us to characterize radiologically the area close to the installation and one affected zone was clearly manifest as being dependent on the direction of the surface water flow from the mine. The activity concentration mean values (Bq/kg) in this zone were: 10,924, 10,900, 10,075 and 5,289 for 238U, 234U, 230Th and 226Ra, respectively, in soil samples and 1,050, 1,060, 768 and 1,141 for the same radionuclides in plant samples. In an unaffected zone, the activity concentration mean values (Bq/kg) were: 184, 190, 234 and 7251 for 235U, 234U, 230Th and 226Ra, respectively, in soil samples and 28. 29, 31 and 80 in plant samples. The activity concentrations obtained for 232Th and 228Th showed that the influence of the mine was only important for the uranium series radionuclides. The relative radionuclide mobilities were determined from the activity ratios. Correlations between radionuclide activity concentrations and stable element concentrations in the soil samples helped to understand the possible distribution paths for the natural radionuclides.  相似文献   

2.
As a result of former uranium mining and milling activities at ?irovski vrh, Slovenia, 0.6 million tons of uranium mill tailings (UMT) were deposited onto a nearby waste pile Boršt. Resulting enhanced levels of natural radionuclides in UMT could pose threat for the surrounding environment. Therefore, sequential extraction protocol was performed to assess mobility and bioavailability of 238U, 234U, 230Th and 226Ra in soils from the waste pile and its surrounding. The radionuclides associated with exchangeable, organic, carbonate, Fe/Mn oxides and residual fraction, respectively, were determined. Results showed that the highest activity concentrations for the studied radionuclides were on the bottom of the waste pile. In non-contaminated locations, about 80% of all radionuclides were in the residual fraction. Considering activity concentrations in the UMT, 238U and 234U are the most mobile. Mobility of 226Ra is suppressed by high sulphate concentrations and is similar to mobility of 230Th.  相似文献   

3.
A study is presented on the distribution and mobilization of the natural U isotopes (238U and 234U), 230Th, and 226Ra in the sediments of a small river crossing an uranium mineralized zone where a disused uranium mine is located. Due to the preferential directions for surface run-off waters and to the mine's situation, one sampling point along the river bed was identified as a point of accumulation of radionuclides. The average values of the activity concentrations (Bq/kg) in this sediment sample were 5,025, 5,055, 5,915 and 1,694 for 238U, 234U, 230Th and 226Ra, respectively, while the respective average values of the activity concentrations (Bq/kg) for the sediment sample considered to give the background level were 125, 124, 131 and 370. Isotopic ratios between the descendants of 238U served to clarify some paths of distribution, involving the soils nearest to the sampling points and the location of these points with respect to the disused mine. The differences in behaviour found between the uranium, thorium and radium isotopes were associated to the mobility of these radionuclides in the fluvial system studied. Correlations between the radionuclide activity concentration ratios and stable element concentrations in the sediment samples were also investigated.  相似文献   

4.
Both soil and plant samples of nine different plant species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed for the plant uptake and translocation of 238U, 226Ra and 232Th. Substantial differences were observed in the soil-plant transfer factor (TF) among these radionuclides and plant species. Lupine (Lupinus albus) exhibited the highest uptake of 238U (TF value of 3.7x10(-2)), while Chinese mustard (Brassica chinensis) had the least (0.5x10(-2)). However, in the case of 226Ra and 232Th, the highest TFs were observed for white clover (Trifolium pratense) (3.4x10(-2)) and ryegrass (Lolium perenne) (2.1x10(-3)), respectively. 232Th in the tailings/soil mixture was less available for plant uptake than 226Ra or 238U, and this was especially evident for Chinese mustard and corn (Zea mays). The root/shoot (R/S) ratios obtained for different plants and radionuclides shown that Indian mustard had the smallest R/S ratios for both 226Ra (5.3+/-1.2) and 232Th (5.3+/-1.7), while the smallest R/S ratio for 238U was observed in clover (2.8+/-0.9).  相似文献   

5.
The present study was conducted to characterize the Technically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) waste generated from oil and gas production. The waste was characterized by means of dry screening solid fractionation, X-ray analysis (XRF and XRD) and gamma-ray spectrometry. Sediment of the TE-NORM waste was fractionated into ten fractions with particle sizes varying from less than 100 microm to more than 3 mm. The results showed that the TE-NORM waste contains mainly radionuclides of the 238U, 235U and 232Th series. The mean activity concentrations of 226Ra (of U-series), 228Ra (of Th-series) and 40K in the waste samples before fractionation (i.e. 3 mm) were found to amount to 68.9, 24 and 1.3 Bq/g (dry weight), respectively. After dry fractionation, the activity concentrations were widely distributed and enriched in certain fractions. This represented a 1.48 and 1.82-fold enrichment of 226Ra and 228Ra, respectively, in fraction F8 (2.0-2.5 mm) over those in bulk TE-NORM waste samples. The activity ratios of 238U/226Ra, 210Pb/226Ra, 223Ra/226Ra and 228Ra/224Ra were calculated and evaluated. Activity of the most hazardous radionuclide 226Ra was found to be higher than the exemption levels established by IAEA [International Atomic Energy Agency, 1994. International Basic Safety Standards for the Protection against Ionizing Radiation and for the Safety of Radiation Sources. GOV/2715/94, Vienna]. The radium equivalent activity (Ra-eq), radon (222Rn) emanation coefficient (EC) and absorbed dose rate (Dgammar) were estimated and these are further discussed.  相似文献   

6.
The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaga-Quseir region and intensified navigation activities are non-nuclear pollution sources that could have serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is essential to establish the radiological base-line data, which does not exist yet, and to investigate the present radio-ecological impact of the non-nuclear industries to preserve and protect the coastal environment of the Red Sea. Some natural and man-made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226Ra and 210Pb (238U) series, 232Th series, 40K and 137Cs (Bq/kg dry weight) were measured using gamma ray spectrometers based on hyper-pure germanium detectors. The specific activities of 210Po (210Pb) and uranium isotopes (238U, 235U and 234U) (Bq/kg dry weight) were measured using alpha spectrometers based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity index (Bq/kg) were calculated. The specific activity ratios of 228Ra/226Ra, 210Pb/226Ra, 226Ra/238U and 234U/238U were calculated for evaluation of the geo-chemical behaviour of these radionuclides. The average specific activity of 226Ra (238U) series, 232Th series, 40K and 210Pb were 24.7, 31.4, 427.5 and 25.6 Bq/kg, respectively. The concentration of 137Cs in the sediment samples was less than the lower limit of detection. The Red Sea coast is an arid region with very low rainfall and the sediment is mainly composed of sand. The specific activity of 238U, 235U and 234U were 25.3, 2.9 and 25.0 Bq/kg. The average specific activity ratios of 226Ra/228Ra, 210Pb/226Ra and 234U/238U were 1.67, 1.22 and 1.0, respectively. The relationship between 226Ra/228Ra activity ratio and sample locations along the coastal shoreline indicates the increase of this ratio in the direction of the Shuqeir in the north and Safaga in the south where the oil exploration and phosphate mining activities are located. These activities may contribute a high flux of 226Ra. The concentration and distribution pattern of 226Ra in sediment can be used to trace the radiological impact of the non-nuclear industries on the Red Sea coast.  相似文献   

7.
Surficial and subsurficial sediment samples derived from gravity cores, selected from the harbour of Patras, Greece, were analyzed for grain size, water content, bulk density, specific gravity, organic carbon content and specific activities of natural radionuclides and (137)Cs. The specific activities of (232)Th, (226)Ra, (40)K and (137)Cs were measured radiometrically. The radionuclides (238)U and (232)Th were also analyzed using the INAA. The differences found between the specific activities of the natural radionuclides measured by the two methods are of no statistical significance. The sediment cores selection was based on a detailed bathymetric and marine seismic survey. Through the study of the detailed bathymetric map and the seismic profiles it was shown that ship traffic is highly influential to the harbour bathymetry. The granulometric and geotechnical properties of the sediments and therefore the specific activities of the natural radionuclides and (137)Cs seem to be controlled by the ship traffic. Relationship between radionuclide activity concentrations and granulometric/geotechnical parameters was defined after the treatment of all the analyses using R-mode factor analysis. The natural radionuclide activities are related to the fine fraction and bulk density of the sediments, while (137)Cs is mainly influenced by the organic carbon content. In addition, (238)U and (226)Ra seem to be in close relation with the heavy minerals fraction in coarse-grained sediments with high specific gravity.  相似文献   

8.
Soil samples were collected around a coal-fired power plant from 81 different locations. Brown coal, unusually rich in uranium, is burnt in this plant that lies inside the confines of a small industrial town and has been operational since 1943. Activity concentrations of the radionuclides 238U, 226Ra, 232Th, 137Cs and 40K were determined in the samples. Considerably elevated concentrations of 238U and 226Ra have been found in most samples collected within the inhabited area. Concentrations of 235U and 226Ra in soil decreased regularly with increasing depth at many locations, which can be explained by fly-ash fallout. Concentrations of 235U and 226Ra in the top (0-5 cm depth) layer of soil in public areas inside the town are 4.7 times higher, on average, than those in the uncontaminated deeper layers, which means there is about 108 Bq kg(-1) surplus activity concentration above the geological background. A high emanation rate of 222Rn from the contaminated soil layers and significant disequilibrium between 238U and 226Ra activities in some kinds of samples have been found.  相似文献   

9.
A new version of a classical method was applied to study the distribution of natural radionuclides (238U, 230Th, and 226Ra) in the soil fractions obtained by a sequential extraction procedure. The potential significance of the fractions obtained with this method was tested on two very similar soils but with very different contents of the three radionuclides, collected in the proximity of a disused uranium mine located in the Extremadura region in the south-west of Spain. The results confirmed that, if only non-residual fractions are considered, the sequential method applied shows a characteristic speciation pattern of these natural radionuclides in this soil matrix, i.e., the distribution of each of the three radionuclides was very similar for the two soil samples.  相似文献   

10.
The uptake of naturally occurring uranium, thorium, radium and potassium by wheat plant from two morphologically different soils of India was studied under natural field conditions. The soil to wheat grain transfer factors (TF) were calculated and observed to be in the range of 4.0 x 10(-4) to 2.1 x 10(-3) for 238U, 6.0 x 10(-3) to 2.4 x 10(-2) for 232Th, 9.0 x 10(-3) to 1.6 x 10(-2) for 226Ra and 0.14-3.1 for 40K. Observed ratios (OR) of radionuclides with respect to calcium have been calculated to explain nearly comparable TF values in spite of differences in soil concentration of the different fields. They also give an idea about the discrimination exhibited by the plant in uptake of essential and nonessential elements. The availability of calcium and potassium in soil for uptake affects the uranium, thorium and radium content of the plant. The other soil factors such as illite clays of alluvial soil which trap potassium in its crystal lattice and phosphates which form insoluble compounds with thorium are seen to reduce their availability to plants. A major percentage (54-75%) of total 238U, 232Th and 226Ra activity in the plant is concentrated in the roots and only about 1-2% was distributed in the grains, whereas about 57% of 40K activity accumulated in the shoots and 16% in the grains. The intake of radionuclides by consumption of wheat grains from the fields studied contributes a small fraction to the total annual ingestion dose received by man due to naturally existing radioactivity in the environment.  相似文献   

11.
Activities of radionuclides in the 238U (230Th, 226Ra, 210Pb) and 232Th (232Th, 228Th, 228Ra) decay series were determined in sediments from an east Texas watershed and examined with isotope ratios and compared to particulate organic carbon (POC), % fines (<63 microm) and total concentrations of Al, Fe and Mn. The objective was to elucidate the presence or absence of relationships affecting the effectiveness of these radionuclides in modeling sediment transport. Strong positive correlations were observed between radionuclides and Mn (Th) and % fines (Ra and Th). Isotope ratios effectively reduce these influences, supporting the contention that isotope ratios offset extrinsic variability in terrestrial sediments. Strong associations of 210Pbxs (excess 210Pb) and 226Ra/230Th with POC agree with data from marine and terrestrial settings, indicating that the role of POC in isotope fractionation, transport and sequestration merits further investigation.  相似文献   

12.
Crude oil terminal sludge contains technologically enhanced naturally occurring radionuclides such as (232)Th, (238)U, (228)Ra and (226)Ra, thus cannot be disposed of freely without proper control. The current method of disposal, such as land farming and storing in plastic drums is not recommended because it will have a long-term impact on the environment. Due to its organic nature, there is a move to treat this sludge by thermal methods such as incineration. This study has been carried out to determine the behaviors of (232)Th, (238)U, (228)Ra and (226)Ra present in the sludge during combustion at a certain temperature and time. The percentage of volatilization was found to vary between 2% and 70%, (238)U was the most volatile in comparison with (232)Th, (228)Ra and (226)Ra. (238)U is found to be significantly volatilized above 500 degrees C, and might reach maximum volatilization at above 700 degrees C. A mathematical model was developed to predict the percentage of volatilization of (232)Th, (238)U, (228)Ra and (226)Ra contained in the sludge. With this known percentage of volatilization, the concentration of (232)Th, (238)U, (228)Ra and (226)Ra present in the bottom and filter ashes can be calculated.  相似文献   

13.
The transfer factors (TF) for natural uranium isotopes (238U and 234U), thorium isotopes (232Th, 230Th and 228Th), and 226Ra were obtained in plant samples (grass-pasture) growing in granitic and alluvial soils around a disused uranium mine located in the Extremadura region in the south-west of Spain. Affected and non-affected areas of the mine presented large differences in the activity concentrations of radionuclides of the uranium series. We also determined transfer factors for several stable elements (essential and non-essential). A set of statistical tests were applied to validate the data. The results showed that the transfer factors for both the natural radionuclides and the stable elements are independent of the two substrate types involved and also of the two areas considered in the study.  相似文献   

14.
A principal component analysis (PCA) was used for classification of soil samples from different locations in Serbia and Montenegro. Based on activities of radionuclides ((226)Ra, (238)U, (235)U, (40)K, (134)Cs, (137)Cs, (232)Th and (7)Be) detected by gamma-ray spectrometry, the classification of soils according to their geographical origin was performed. Application of PCA to our experimental data resulted in satisfactory classification rate (86.0% correctly classified samples). The obtained results indicate that gamma-ray spectrometry in conjunction with PCA is a viable tool for soil classification.  相似文献   

15.
Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The sand samples collected at different distances from sea waterline and at different depths, were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of sand to study the enrichment pattern. The highest activity was found confined in 125-63 microm particle size fraction in sand. The minimum (232)Th activity was 9.4 Bq kg(-1), found in Kollam at a depth of 10-20 cm, 40 m away from waterline in 500-250 microm particle size fraction and maximum activity of 136,811.2 Bq kg(-1) was observed in Chavara in grains of size 125-63 microm at a depth of 0-10 cm for a sample collected 20 m away from waterline. The lowest (226)Ra activity observed was 29.6 Bq kg(-1) at Kollam beach for a sample 40 m away from waterline in grains of size 1000-500 microm and at a depth of 20-30 cm and the highest activity observed was 10,309 Bq kg(-1) in grains of size 125-63 microm for a sample collected at a distance 20 m away from waterline and at a depth of 0-10 cm. The activity of (40)K was below detectable level in most of the samples collected from the high background monazite area. The (232)Th, (226)Ra activities decrease with depth for the samples collected 20 m away from the waterline and increase with depth for the samples collected 40 m away from the waterline at Chavara and Kollam beaches. No definite correlation was found between variation of the concentrations of (232)Th and (226)Ra with depth at Karunagapalli and Neendakara beach sands. There exists a strong correlation between (226)Ra and (232)Th activities in the region. The results of these investigations are presented and discussed in this paper.  相似文献   

16.
The Brazilian phosphate fertilizer is obtained by wet reaction of igneous phosphate rock with concentrated sulphuric acid, giving as final product, phosphoric acid and dehydrated calcium sulphate (phosphogypsum) as by-products. Phosphoric acid is the starting material for triple superphosphate (TSP), single superphosphate (SSP), monoammonium phosphate (MAP) and diammonium phosphate (DAP). The phosphate rock used as raw material presents in its composition radionuclides of the U and Th natural series. Taking this into account, the main aim of this paper is to evaluate the fluxes of natural radionuclides and radioactive disequilibria involved in the Brazilian industrial process of phosphoric acid production; to determine the content of radioactivity in several commercial fertilizers produced by this industry; to estimate their radiological impact in crop soils and the long term exposure due to their application. Radiological characterization of phosphate rock, phosphogypsum and phosphate fertilizers was performed by alpha and gamma spectrometry. The fertilizer samples, which are derived directly from phosphoric acid, MAP and DAP, presented in their composition low activity concentrations for 226Ra, 228Ra and 210Pb. As for U and Th, the concentrations found in MAP and DAP are more significant, up to 822 and 850Bqkg(-1), respectively. SSP and TSP, which are obtained by mixing phosphoric acid with different amounts of phosphate rock, presented higher concentrations of radionuclides, up to 1158Bqkg(-1) for (238)U, 1167Bqkg(-1) for (234)U, 1169Bqkg(-1) for 230Th, 879Bqkg(-1) for 226Ra, 1255Bqkg(-1) for 210Pb, 521Bqkg(-1) for 232Th, 246Bqkg(-1) for 228Ra and 302Bqkg(-1) for 228Th. Long term exposure due to successive fertilizer applications was evaluated. Internal doses due to the application of phosphate fertilizer for 10, 50 and 100 years were below 1mSvy(-1), showing that the radiological impact of such practice is negligible.  相似文献   

17.
There is a lack of appropriate data on transfer of some radionuclides on many terrestrial biota groups. To expand the available data concentration ratios of 238U, 226Ra, 232Th, 40K and 137Cs in mosses are presented in this paper. The relationship between concentration ratios of radionuclides and physicochemical characteristics of the underlying soil was also investigated. The data on concentration ratios obtained here will provide a useful addition to the currently used database of transfer parameters, particularly for natural radionuclides.  相似文献   

18.
Specific activities of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured by means of gamma-ray spectrometry in surface soil samples collected from the city of Ptolemais, which is located near lignite-fired power plants. The mean activity values for (238)U, (226)Ra, (232)Th and (40)K were found to be 42+/-11, 27+/-6, 36+/-5 and 496+/-56 Bq kg(-1), respectively. These values fall within the range of typical world and Greek values for soil. The indoor radon concentration levels, which were also measured in 66 dwellings by means of SSNTD, ranged from 12 to 129 Bq m(-3), with an average value of 36+/-2 Bq m(-3). This value is close to world and Greek average values for indoor radon concentrations. The total effective dose due to outdoor external irradiation of terrestrial origin and to indoor internal irradiation from the short-lived decay products of (222)Rn was estimated to be 1.2 mSv y(-1) for adults, which is lower than the global effective dose due to natural sources of 2.4 mSv y(-1).  相似文献   

19.
Phosphate and environmental samples were collected from Abu Tartor phosphate mine and the surrounding region. The activity concentration of 226Ra (238U) series, 232Th series and 40K were measured using a gamma-ray spectrometer. The activities of uranium isotopes (238U, 235U and 234U) and 210Pb were measured using an alpha spectrometer and a low-background proportional gas counting system, respectively, after radiochemical separation. The results are discussed and compared with the levels in phosphate rocks from different countries. It seems that the Abu Tartor phosphate deposit has the lowest radioactivity level of exploited phosphate of sedimentary origin. 226Ra/238U, 210Pb/226Ra, 234U/238U and 226Ra/228Ra activity ratios were calculated and are discussed. The radioactivity levels in the surrounding region and the calculated exposure dose (nGy/h) will be considered as a pre-operational baseline to estimate the possible radiological impacts due to mining, processing and future phosphate industrial activities. To minimize these impacts, the processing wastes should be recycled to the greatest possible extent.  相似文献   

20.
Fifty-two soil samples in the vicinity of a coal-fired power plant (CFPP) in Figueira (Brazil) were analyzed. The radionuclide concentration for the uranium and thorium series in soils ranged from <9 to 282 Bq kg(-1). The range of 40K concentration in soils varied from <59 to 412 Bq kg(-1). The CFPP (10 MWe) has been operating for 35 years and caused a small increment in natural radionuclide concentration in the surroundings. This technologically enhanced natural radioactivity (TENR) was mainly due to the uranium series (234Th, 226Ra and 210Pb) and was observable within the first kilometer from the power plant. The CFPP influence was only observed in the 0-25 cm soil horizon. The soil properties prevent the radionuclides of the 238U-series from reaching deeper soil profiles. The same behavior was observed for 40K as well. No influence was observed for 232Th, which was found in low concentrations in the coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号