首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.  相似文献   

2.
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.  相似文献   

3.
Chemical and isotopic (??13C and ??15N) investigation of the Mandovi estuary along the Indian west coast affected strongly by the seasonal monsoon cycle was carried out. The Mandovi estuary is a major waterway for Goa and extensively used for transportation of iron and manganese ore. In addition, with large population centers as well as agricultural fields located on its shores, the estuary is assumed to have been influenced by human activities. Measurements of chemical and isotopic parameters made in the lower part of the estuary during the southwest (SW) monsoon and post-monsoon seasons reveal distinct changes, and it is observed that despite considerable enrichment of macronutrients during the SW monsoon, productivity of the estuary (phytoplankton biomass), as inferred from the chlorophyll-a content, is not as high as expected. This is due to occurrences of high turbidity and cloud cover that limits photosynthetic productivity. The isotopic characterization (C and N isotopes) of suspended organic matter produced/transported during the monsoon and post-monsoon seasons of year 2007 provides a baseline dataset for future isotopic studies in such type of tropical estuaries.  相似文献   

4.
A study was carried out in the coastal waters of Kalpakkam, southeast coast of India, to find out the seasonal variation in dinoflagellate community structure. Samples were collected for a period of 4 years during 2006–2010. During the study 69 species of dinoflagellates were encountered among which Ceratium furca and Prorocentrum micans were most common during all the seasons. Genus Ceratium was found to be the most diverse one with 23 species which was followed by genus Protoperidinium with 16 species. Of 69 species, 27 species were considered as dominant based on their abundance during pre-monsoon (PRM), monsoon (MON) and post-monsoon (POM) periods. Relatively high density and diversity of dinoflagellates were encountered during the PRM period as compared to the MON and POM periods. Abundance pattern of dinoflagellates for three seasons showed the following trend: PRM?>?POM?>?MON. Salinity showed a positive correlation with dinoflagellate community showing its importance in dinoflagellate growth and sustenance. Ammonia and phosphate developed negative correlation with dinoflagellate density indicating the utilization of these nutrients by the dinoflagellate community. The presence of three dinoflagellate associations, broadly representing the three seasons experienced at this location, was evident from the cluster analysis. The study revealed presence of 19 relatively abundant toxic/red tide forming dinoflagellate species in the coastal waters of Kalpakkam.  相似文献   

5.
A significant variation in physicochemical properties of the Kalpakkam coastal waters, eastern part of India, was observed during the event of southwest to northeast monsoon transition. Increase in nitrate, total nitrogen, and silicate concentrations were noticed during post-transition period. Ammonia concentration was at peak during transition period as compared to pre- and post-transition periods. Hypo-saline condition (~23 psu) was observed during post-transition as the surface water salinity decreased by ~10 psu from the pre-transitional values. Turbidity, suspended particulate matter, phosphate and total phosphorous values decreased marginally, coinciding with northward to southward current reversal. A drastic decrease (eightfold) in chlorophyll-a concentration was observed in the coastal water during post-transition period.  相似文献   

6.
Seasonal and spatial phytoplankton distribution in relation to environmental factors was investigated in New Mangalore Port, a major port along the west coast of India. A well-mixed water column characterized the non-monsoon seasons, whereas it was weakly stratified during monsoon. Water quality index (TRIX) scores indicated good water quality except during pre-monsoon (inner zone surface) and monsoon (near bottom waters). Surface abundance of tychopelagic diatoms (Paralia sulcata, Melosira nummuloides, Cylindrotheca closterium, and Nitzschia sigma) was higher during non-monsoon seasons. Certain centric diatoms, e.g., Leptocylindrus danicus, P. sulcata, and Rhizosolenia imbricata, dominated during pre-monsoon (inner zone) and positively correlated with TRIX. High Skeletonema costatum and dinoflagellate abundance during the monsoon season coincided with high nutrient concentrations. Five potential toxic and fourteen harmful/bloom forming algal species were encountered at abundances below the level that can be considered as harmful to the ecosystem. In addition to a baseline database, this study highlights the potential use of certain diatom species as indicators of hydrography and water quality for monitoring dynamic coastal marine ecosystems.  相似文献   

7.
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.  相似文献   

8.
The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l?1) and high bottom DO (>4 mg l?1), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l?1 in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l?1) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.  相似文献   

9.
The objective of the study is to reveal the seasonal variations in the river water and sediment quality with respect to heavy metal contamination. To get the extent of trace metals contamination, water and sediment samples were collected from five different sites along the course of Sabarmati River and its tributary Kharicut canal in pre-monsoon, monsoon and post-monsoon seasons. The concentration of trace metals such as chromium, copper, lead, nickel and zinc was determined using inductively coupled plasma spectroscopy. The concentrations of heavy metals were found to be higher in the pre-monsoon season than in the monsoon and post-monsoon seasons in water samples. The pollution load index, contamination factor and degree of contamination (C d) in sediments were calculated to know the extent of anthropogenic pressures. The values of C d clearly indicated very high degree of contamination at Kharicut canal (S-4: 32.25 and S-5: 54.52) and considerable degree of contamination at three sites of Sabarmati river viz; S-1, S-2 and S-3 with values 14.30, 14.42 and 17.21, respectively. Lead and nickel could not be traced in any of the river water samples.  相似文献   

10.
Waste stabilization pond is an artificial ecosystem; its performance is governed by the nature of the biological communities it supports. These are primarily used as secondary effluent treatment plants to polish the effluents. However, they are also used to treat the raw sewage and industrial effluents. In the present study, the functioning of a waste stabilization pond system from an industrial complex located in Goa was taken up. The raw waste released by the industrial complex and the final effluent released from the stabilization ponds were analyzed for pH, dissolved oxygen (DO), biological oxygen demand, phosphate content, chlorophyll content, and algal diversity and density. Also, the activities of the enzymes catalase and phosphatase were measured. The study was carried out for a period of 1 year and the data covering pre-monsoon, monsoon, and post-monsoon seasons are tabulated. The study revealed that DO, chlorophyll content, and algal count were maximum during pre-monsoon when compared to monsoon and post-monsoon. Similarly, maximum enzymatic activity was recorded during pre-monsoon and also maximum removal of biological oxygen demand and phosphate was recorded during this period than in monsoon and post-monsoon.  相似文献   

11.
Spatial and temporal distribution patterns of total suspended solids (TSS) in the shallow and macrotidal regions of the Korean peninsula indicated there were significant changes in TSS concentrations. These were seasonally influenced by the wind, river input and tidal cycle. There were high TSS values at estuarine and river mouth stations and during low tide due to the re-suspension of bottom sediment by strong wind action during winter months, in addition the land input through rivers and strong tidal current during ebbing. Monthly mean values of TSS significantly correlated with wind speed and nitrate concentration (p < 0.01). This indicated that the resuspension of surface sediment was a more important source of TSS than the river input, and that nitrate was introduced into the water column during the resuspension process. TSS were seven times higher at low tide than in high tide. Light penetration was significantly inhibited by TSS; as >98% of incident light was absorbed within 2 m and zero photosynthetically active radiation (PAR) under 2 m in the estuarine stations during winter. Removal of heavy metals and nutrients by TSS in the water column was evident. Over 80% of the initial concentration of nutrients was removed within 10 min under various concentrations of TSS and also TSS contained significantly higher concentration of heavy metals than surface sediment. The concentration levels of nutrients and chemical oxygen demand in the west coast were comparable with the East and South Sea, even the major rivers in the Korean peninsula flow into the West Sea with major pollutant loadings into the coastal areas. High concentration of TSS is likely to contribute to the removal process of these pollutants, resulting in relatively lower levels of nutrients and organic materials in these coastal waters.  相似文献   

12.
Due to the close proximity of the Bay of Bengal and the freshwater inflow of Bhagirathi-Hooghly, Diamond Harbour appeared as an important coastal station of the Bhagirathi-Hooghly estuary. The spatial and temporal composition and abundance of microphytoplankton species was examined in relation to physical and chemical surface water variables (i.e., salinity, nutrient, and temperature).The primary objective of the study was to observe the variations in phytoplankton species assemblages as a response to environmental variables. Hierarchical cluster analysis and non-metric multidimensional scaling were used to find out distinct seasonal groups based on the composition of phytoplankton. The results indicate that several key environmental factors like temperature, DIN content, and molar ratio of nutrients like DIN-DIP and DIN-DSi influenced seasonal phytoplankton assemblages within the estuary. The distribution of phytoplankton population showed two main groups where the blue-green and green algal populations favored the warmer conditions of summer and monsoon months, whereas the diatom population primarily flourished in the cooler months of autumn and winter.  相似文献   

13.
Mercury contamination in the water bodies of developing countries is a serious concern due to its toxicity, persistence, and bioaccumulation. Vembanad, a tropical backwater lake situated at the southwest coast of India, is the largest Ramsar site in southern India. The lake supports thousands of people directly and indirectly through its resources and ecosystem services. It is highly polluted with toxic pollutants such as heavy metals, as it receives effluent discharges from Kerala’s major industrial zone. In the present study, water, pore water, sediment, and fish samples collected from Vembanad Lake were analysed for total mercury (THg) and methyl mercury (MHg) contents. The maximum concentrations of THg and MHg in surface water samples were31.8 and 0.21 ng/L, respectively, and those in bottom water samples were 206 and 1.22 ng/L, respectively. Maximum concentration of THg in surface sediment was observed during monsoon season (2850 ng/g) followed by that in the pre-monsoon season (2730 ng/g) and the post-monsoon season (2140 ng/g). The highest sediment concentration of MHg (202.02 ng/g) was obtained during monsoon season. The spatial variation in the mercury contamination clearly indicates that the industrial discharge into the Periyar River is a major reason for pollution in the lake. The mercury pollution was found to be much higher in Vembanad Lake than in other wetlands in India. The bioaccumulation was high in carnivorous fishes, followed by benthic carnivores. The THg limit in fish for human consumption (0.5 mg/kg dry wt.) was exceeded for all fish species, except for Glossogobius guiris and Synaptura orientalis. The concentration of THg was five times higher in Megalops cyprinoides and four times higher in Gazza minuta. Significant variation was observed among species with different habits and habitats. Overall, risk assessment factors showed that the mercury levels in the edible fishes of Vembanad Lake can pose serious health impacts to the human population.  相似文献   

14.
In order to understand the phytoplankton community structure and its relationship with the environmental variables in the near shore waters of Kalpakkam, east coast of India, observations were carried out during 2008–2009. Phytoplankton population was comprised of 219 species, and the density was higher during the southwest monsoon (SWM) and inter-monsoon seasons than that of north east monsoon (NEM) season. The nutrient status on a temporal and spatial scale indicated the impact of point sources carrying anthropogenic runoff. Comparison of ambient nutrient ratios with the Redfield ratio (N/P/Si?=?16:1:16) showed a clear temporal variation in the factors that regulate the phytoplankton growth. SWM and inter-monsoon season was evident to have an acute N-limitation of algal growth (~76 %) whereas P-limitation was encountered during the NEM season (~75 %). Interestingly, a sizable population of cyanobacteria (Trichodesmium erythraeum) were noticed during NEM season when there was an exponential increase in nitrogen concentration, probably due to nitrogen fixation. No significant impact of temperature on phytoplankton proliferation was observed in situ during the study period.  相似文献   

15.
In a monsoon-affected tropical estuary, oscillations in freshwater discharge during monsoon shifted the phytoplankton blooms from those adapted to low salinities to high salinities and vice versa. Salinity stratification during monsoon (onset and restart after an intermittent break) favored diatom (Skeletonema) bloom in low-saline surface waters. In high-saline, nutrient-rich bottom waters, Fragilariopsis (diatom) bloom was observed during onset of monsoon and persisted till the end of monsoon. The break period in monsoon altered the phytoplankton community leading to mixed species bloom of large-sized diatoms and harmful dinoflagellates (Gymnodinium catenatum and Cochlodinium polykrikoides) under high-saline, nutrient-poor, non-stratified, and transparent water column. Such variations in community should be considered for better understanding the biogeochemistry of monsoon-influenced tropical estuaries. The dominance of Skeletonema is determined positively by the extent of low-saline stratified condition whereas most of the observed taxa were favored by high-saline, nutrient-poor, and transparent waters.  相似文献   

16.
Red tide of dinoflagellate was observed in brackish water fish ponds of Terengganu along the coast of the South China Sea during the study period between January 1992 to December 1992. The nearby coastal moat water facing the South China Sea is the source of water for fish pond culture activities of sea bass during the study period. An examination of water quality in fish ponds during the study period indicated that both the organic nutrients were high during the pre-wet monsoon period. The source of the nutrients in coastal water was believed to be derived from the agro-based industrial effluents, fertilizers from paddy fields and untreated animal wastes. This coincided with the peak production of dinoflagellate in the water column in October 1992. The cell count ranges from 8.3 to 60.4×10.4×104/l during the bloom peak period and the bloom species were compared entirely of non-toxic dinoflagellates with Protoperidinium quinquecorne occurring >90% of the total cell count. However, both cultured and indigenous fish species were seen to suffer from oxygen asphyxiation (suffocation due to lack of oxygen). The bloom lasted for a short period (4–5 days) with a massive cell collapse from subsurface to bottom water on the sixth day. The productivity values ranged from 5–25 C g/ l / h with a subsurface maximum value in October 1992. Two species of Ciliophora, Tintinnopsis and Favella, were observed to graze on these dinoflagellates at the end of the bloom period.  相似文献   

17.
Characteristics of the monsoonal bloom of phytoplankton at Orissa Coast in the Bay of Bengal were studied through bimonthly observation from April 2001 to December 2002. Three photosynthetic pigments chlorophyll-a (Chl a), chlorophyll-b (Chl b) and carotenoid (Car) were analyzed by absorption spectroscopic method. The seasonal variation of Chl a included phytoplankton bloom in the coastal area during monsoon period. The water column integrated Chl a reached to 68 mg m(-2) at the station-1(St1), and amounted to 20 mg m(-2) at 30 km off the river mouth during August 2001. In contrast the same amount was found at 15 km off the Mahanadi river mouth during August 2002. Salinity during this period varied from 5 psu at the St1 to 27 psu at the edge of the bloom area. The total amount of river discharge in the monsoon period calculated from daily river discharge data reported by Water Resources Department in India was 84 x 10(9) m(3) during 2001 and 20 x 10(9) m(3) during 2002. Both nitrate and phosphate concentrations showed negative quadratic relationship with salinity throughout the observation period. Extrapolated nitrate and phosphate concentration discharge from the Mahanadi river were 10.8 and 4 microg-at l(-1), respectively. Microscopic identification revealed dominance of fluvial Chlorophyceae and diatoms during the monsoon period showing influence of the freshwater discharge.  相似文献   

18.
The present work revealed that salinity, water temperature, and food availability were the most crucial factors affecting the abundance of larvae and their settlement as macrofouling community in the coastal waters of Kalpakkam. Quantitative as well as qualitative results showed that late post-monsoon (April–May) and pre-monsoon (June–September) periods were found to be suitable periods for larval growth, development, and survival to adult stages for most of the organisms. Clustering of physico-chemical and biological (including larval and adult availability) data yielded two major clusters; one formed by northeast (NE) monsoon months (October–January) and the other by post-monsoon/summer (February–May) months, whereas; pre-monsoon months (June–September) were distributed between these two clusters. Among all the major macrofouler groups, only bivalves established a successful relationship between its larval abundance and adult settlement. Principal component analysis indicated good associations of bivalve larvae with polychaete larvae and adult bivalves with adult barnacles. However, biotic relation between ascidians and bryozoans was observed both in the larval as well as adult community.  相似文献   

19.
Residential, industrial, commercial, institutional and recreational activities discharge degradable and non-degradable wastes that reach the coastal water through rivers and cause coastal pollution. In the present study, mass transport of pollutants by Adyar and Cooum Rivers to the coastal water as a result of land-based discharges was estimated during low tide. The lowest and the highest flow recorded in Adyar varied from 514.59 to 2,585.08×106 litres/day. Similarly, the flow in Cooum River fluctuated between 266.45 and 709.34×106 litres/day. The present study revealed that the Adyar River transported 53.89–454.11 t/d of suspended solids, 0.06–19.64 t/d of ammonia, 15.95–123.24 t/d of nitrate and 0.4–17.86 t/d of phosphate, 0.004–0.09 kg/d of cadmium, 0.15–1.29 kg/d of lead and 3.03–17.58 kg/d of zinc to the coastal water owing to its high discharge. Similarly, the Cooum River transported 11.87–120.06 t/d of suspended solids, 0.08–58.7 t/d of ammonia, 6.11–29.25 t/d of nitrate and 0.66–10.73 t/d of phosphate, 0.003–0.021 kg/d of cadmium, 0.02–0.44 kg/d of lead and 1.36–3.87 kg/d of zinc. A higher concentration of suspended solids was noticed in post monsoon and summer months. An increase in the mass transport of ammonia, nitrate, phosphate in summer months (April and May) and an increase in the mass transport of cadmium, lead and zinc were observed in monsoon months (October–December) in both the rivers. Thus mass transport of pollutants study reveal that Cooum and Adyar Rivers in Chennai contribute to coastal pollution by transporting inorganic and trace metals significantly through land drainage.  相似文献   

20.
The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号