首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Dynamic optimal diet models predict that host selection decisions and patch time allocation are influenced by the resource value of the habitat. We tested these predictions using the solitary' parasitoid Leptopilina heterotoma. Assuming that travel times between patches, the quality of previously visited patches and parasitoid density affect the parasitoids' estimation of the resource value of the habitat, different treatments were given before introducing parasitoids singly to a patch containing 5 unparasitized and 15 parasitized hosts. The decision to superparasitize is only slightly influenced by the rate of patch encounter. The quality of the previously visited patch has a strong influence. When a poor patch has been visited on the previous day, more superparasitism is observed in the partly depleted patch than when a rich patch has been searched. More superparasitism is also observed when the parasitoids are kept with conspecifics before the experiment than when they are kept alone. Increasing patch residence times are observed as the quality of the previously presented patch decreases. Host selection decisions and patch time allocation are thus clearly influenced by the pre-patch experience of the parasitoid, as predicted by dynamic optimal diet models. This can also explain why females that have never oviposited in unparasitized hosts will superparasitize readily. Correspondence to: M.E. Visser  相似文献   

2.
Learning affects host discrimination behavior in a parasitoid wasp   总被引:4,自引:0,他引:4  
Learning is generally predicted not to be important in host discrimination by parasitoids, because the stimuli involved are less variable than those used in habitat location. However, Anaphes victus (Hymenoptera: Mymaridae), an egg parasitoid of Listronotus oregonensis (Coleoptera: Curculionidae) apparently learns to associate external pheromones with the presence of a conspecific in a host. In this species, females can reject a parasitized host either after antennal drumming (antennal rejection) or after the insertion of their ovipositor (sting rejection). When they encountered a series of parasitized hosts, females A. victus learned to associate the presence of the external pheromone with the presence of the internal one. Learning lasted less than 4 h and occurred earlier in a series when the female marking the egg and the one detecting that mark were close relatives. This behavior could be adaptive because antennal rejection is faster than sting rejection. Received: 11 March 1997 / Accepted after revision: 30 August 1997  相似文献   

3.
In solitary parasitoids, in which only one individual can emerge per host, the adaptive value of conspecific superparasitism is a function of the survival probability of the egg laid by the superparasitizing female. In the few cases which these probabilities are compared, the oldest immature has an advantage over the other individuals. We measured the acceptance rate of parasitized hosts and survival rate of supernumerary larvae in Anaphes victus (Hymenoptera: Mymaridae) in relation to the interval between ovipositions. When this interval was 5–7 days, the first immature was at the prepupa and pupa stage respectively, and female Anaphes victus changed their oviposition behavior markedly. They killed the developing parasitoid of their own species before ovipositing in it. The progeny of these females, which are normally primary parasitoids, developed thereafter as hyperparasitoids. Indeed, in contrast with other species, the survival of the second female's progeny increased with the time interval between ovipositions. This type of facultative intraspecific hyperparasitism is different from autoparasitism in Aphelinidae and has never been mentioned in other parasitoids; it would be adaptive if females of this short-lived species encounter low-quality patches.  相似文献   

4.
Although there are many examples of the role of volatile infochemicals in interactions between trophic levels of insect communities, surprisingly little is known of volatile interactions between species within the third trophic level. Recently it was found that Leptopilina heterotoma, an endoparasitoid that attacks Drosophila larvae, avoids one type of patches (decaying stinkhorn mushrooms) when parasitoids of another species (L. clavipes) are present on these patches. L. heterotoma is able to smell the presence of L. clavipes from a distance (Fig. 1). In this paper we investigate the source of the odour that induces avoidance behaviour, by varying the host species and parasitoid species present on stinkhorn mushrooms, and by using another type of patch (sap-fluxes of wounded trees). L. heterotoma was found to avoid stinkhorn patches with conspecific as well as heterospecific parasitoids (Fig. 2). Hosts had to be present in the patch to elicit avoidance, but avoidance behaviour was also found with another host species present in the patch (Fig. 3). No avoidance behaviour was found with sap-flux patches with hosts and parasitoids on them (Fig. 4). Avoidance of stinkhorn patches only occurred when the parasitoids present on the patch were able to contact hosts (Figs. 5 and 6). The exact source of the odour that elicits avoidance is still unclear, so that one can only speculate on the function of the signal. However, there is a clear benefit to the receiver, because it is able to avoid superior competitors. Avoidance can lead to non-aggregated parasitoid distributions. The importance of avoidance behaviour for population dynamics and stability of parasitoid-host systems is discussed.  相似文献   

5.
When foraging partially depleted patches (i.e., a fraction of hosts are already parasitized), female parasitoids must decide: 1—whether to superparasitize, and 2—whether to stay in their current patch (thus missing the opportunity of finding a better patch elsewhere). To make these decisions, parasitoids may rely on different cues, produced both by the environment and by conspecifics. Animals thriving in different environments may differ in cues they use. In the solitary parasitoid Venturia canescens, thelytokous (asexual) and arrhenotokous (sexual) individuals are found in two contrasting environments. Thelytokous females, from anthropogenic conditions, are known to cope with superparasitism in an adaptive way. On the other hand, little is known about superparasitism by arrhenotokous females. We compared the host exploitation strategies of thelytokous and arrhenotokous females in partially depleted patches. Hosts parasitized by thelytokous females were more frequently avoided than those parasitized by arrhenotokous females, suggesting a stronger chemical marking of the former. Only thelytokous females used information from conspecifics for patch-leaving decisions. The conformity of the differences in the behavior of thelytokous and arrhenotokous females with the environmental conditions they experience in their habitat is discussed.  相似文献   

6.
For a facultative kleptoparasite, the decision to allocate time and energy to search for a prey or for a kleptoparasite opportunity could be influenced by its prior experience. In this study, we investigated the influence of experience on the proportion of the facultative kleptoparasitoid Eupelmus vuilleti females choosing an unparasitized host or a host parasitized by Dinarmus basalis. When exploiting hosts previously parasitized by D. basalis, a large proportion of E. vuilleti females reused the hole drilled by the D. basalis female, which led to a reduction in the time needed to reach the host. When submitted to successive choice tests between an unparasitized host and a host parasitized by D. basalis in a natural host-plant system, the proportion of E. vuilleti females which choose the parasitized host increased with the female experience. The same experiment carried out with an artificial host-plant system allowing an easy access to the host did not show a variation of the females’ choice with experience. A reward—here a faster access to the host through the hole drilled by the D. basalis female—seems necessary to mediate the associative learning expressed by the preferential choice of the parasitized host.  相似文献   

7.
Summary Among insect parasitoids, superparasitism is said to occur when a second clutch of eggs is laid on a previously parasitized host. Ovicide occurs when a parasitoid destroys a clutch of eggs laid on a host by a previous female. Here, general models are constructed to predict the conditions which favor superparasitism and ovicide. Major predictions for the ovicidal model were that ovicide is more likely to occur if the time necessary to kill eggs is short, if travel times and the proportion of parasitized hosts increases and if the competitive advantage of a first clutch is large. The predictions of the models were tested by examining superparasitism and ovicide in Bracon hebetor (Say), a gregarious, ectoparasitoid of phytisiine moths. Using a wild and eye color mutant of B. hebetor to distinguish first and second clutches, it was found that the competitive advantage of a first clutch over a second clutch increased with the time between ovipositions. Patterns of superparasitism and ovicide in B. hebetor were in qualitative agreement with the major predictions of the model. Most notable, ovicide increased in frequency with a decrease in the overall rate of host encounter and an increase in the proportion of parasitized hosts encountered.  相似文献   

8.
When endoparasitoid wasps oviposit into hosts which have already been parasitized (= superparasitism), this results in potentially lethal interlarval competition. For solitary species, the decision to lay additional eggs should therefore be based on the probability of superparasite survival in any superparasitized host. In this study, in vitro contests staged between three larval instars of Venturia canescens Grav. (Hymenoptera: Ichneumonidae) reveal that the age difference between competitors affects the outcome of interlarval competition. Three parameters were used to assess parasitoid performance: the number of fights initiated, the number of bites inflicted, and the duration of each bite. When fighting takes place between two first instars, then both competitors were found to be evenly matched. However, at greater age differences, first-instar competitors appeared to win more fights than their larger second instar rivals. The advantage shown by younger competitors is most pronounced in contests staged between first and third instar larvae. These findings are consistent with the increasingly high levels of conspecific superparasitism shown by V. canescens in the first 5 days after initial host attack, suggesting that this parasitoid can deploy her use of deliberate superparasitism in an adaptive way. Received: 13 December 1995/Accepted after revision: 5 March 1996  相似文献   

9.
Within the framework of optimal foraging theory, models assume that parasitoid insects are able to evaluate the quality of the patch in which they are currently searching for hosts and the travel time between patches. They can adjust their residence time in consequence. Simple and more realistic decision mechanisms that induce behavior compatible with the predictions of these models have been proposed for a number of species. Most of these decision mechanisms only take into account the presence of unparasitized hosts. Here, we studied the consequences for leaving patches containing different proportions of unparasitized and parasitized hosts. We support the hypothesis that parasitoids sample their environment and we propose a binomial sequential model, based on the type of host encountered (unparasitized or parasitized) instead of on the time spent in a patch, to explain the giving-up behavior of a parasitoid in a patch. A motivational incremental/decremental stochastic process is proposed to explain a possible mechanism of the apparent sampling scheme followed by the insect. The empirical data support the hypothesis of a sequential, decisional, binomial sampling scheme performed with a limited memory. This memory is, in fact, more an effect of habituation than the "true memory" of the parasitoid. The theoretical model was applied to real data obtained with an encyrtid parasitoid. These data were also compared to realizations of the incremental/decremental process.  相似文献   

10.
The parsnip webworm, Depressaria pastinacella, specializes on wild parsnip, Pastinaca sativa, and several species of Heracleum, hostplants rich in toxic furanocoumarins. Rates of furanocoumarin metabolism in this species are among the highest known for any insect. Within its native range in Europe, webworms are heavily parasitized by the polyembryonic parasitoid wasp Copidosoma sosares. In this study, we determined whether these parasitoids are exposed to furanocoumarins in host hemolymph, whether they can metabolize furanocoumarins, and whether parasitism influences the ability of webworms to detoxify furanocoumarins. Hemolymph of webworms fed artificial diet containing 0.3 % fresh weight xanthotoxin, a furanocoumarin prevalent in wild parsnip hosts, contained trace amounts of this toxin; as well, hemolymph of webworms consuming P. sativa flowers and fruits contained trace amounts of six of seven furanocoumarins present in the hostplant. Thus, parasitoids likely encounter furanocoumarins in host hemolymph. Assays of xanthotoxin metabolism in C. sosares failed to show any ability to metabolize this compound. Parasitized webworms, collected from populations of Heracleum sphondylium in the Netherlands in 2004, were on average 55 % larger by weight than unparasitized individuals. This weight is inclusive of host and parasitoid masses. Absolute rates of detoxification (nmoles min−1) of five different furanocoumarins were indistinguishable between parasitized and unparasitized ultimate instars, suggesting that the intrinsic rates of metabolism are fixed. Thus, although parasitized larvae are larger, detoxification rates are not commensurate with size; rates in parasitized larvae expressed per gram of larval mass were 25 % lower than in unparasitized larvae.  相似文献   

11.
The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, na?ve female P. vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female P. vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining P. vindemiae attack rates, mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness. Electronic Publication  相似文献   

12.
In an effort to distinguish among adaptive models and to improve our understanding of behavioral mechanisms of sex ratio manipulation, this study examines sex ratio responses to other wasps in the solitary parasitoid wasp Spalangia cameroni. Relative to when alone, females produced a greater proportion of sons in the presence of conspecifics, regardless of whether the conspecifics were female or male. In addition, females produced a greater proportion of sons after a day with a conspecific male, and after a day with a conspecific female, but only if the females had been ovipositing. Relative to when alone, females did not produce a greater proportion of sons in the presence of females of the confamilial Muscidifurax raptor or in response to hosts that had already been parasitized by a conspecific. A combination of evolutionary models may explain S. cameroni’s sex ratios. An increased proportion of sons in response to conspecific females is common among parasitoid wasps and is usually explained by local mate competition (LMC) theory. However, such a response is also consistent with the perturbation model, although not with the constrained females model. The response to conspecific males is not consistent with LMC theory or the perturbation model but is consistent with the constrained females model.  相似文献   

13.
Summary I examined the tactics adopted by a conspecific brood parasite, the American coot (Fulica americana), and the degree to which these tactics reflect sources of mortality for parasitic eggs. Only 8% of parasitic eggs produced independent offspring, compared to a 35% success rate for non-parasitic eggs, and most mortality was due to egg-rejection by hosts or the consequences of laying eggs too late in the host's nesting cycle. Parasites usually laid parasitically before initiating their own nests and usually parasitized immediate neighbours. Parasites did not remove host eggs before laying their own egg, and egg disappearance in general was not more common at parasitized nests. I found no evidence for non-random host choice, either on the basis of stage of the host's nesting cycle or the host's brood size. The absence of adaptive host choice is likely a consequence of the fact that, due to host limitation, only a small proportion of parasites had meaningful variation among potential hosts to choose from. The pattern of egg dispersion among host nests by individual parasites appears to be a compromise between constraints imposed by host limitation and the increased success obtained from spreading eggs among nests. Most females laying fewer than five parasitic eggs laid them in a single host nest while females laying five or more eggs normally parasitized two or more hosts. An examination of egg rejection and survival rates showed that parasites would maximize success by laying a single egg per host nest, and the pattern of laying several eggs per host nest is likely a consequence of host limitation. However, no egg that was the fifth laid, or later, parasitic egg in a host nest was ever successful and this probably explains why most females laying five or more eggs parasitized more than one host.  相似文献   

14.
Cameron TC  Metcalfe D  Beckerman AP  Sait SM 《Ecology》2007,88(5):1225-1231
Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics.  相似文献   

15.
The present study aimed to address how an insect parasitoid makes patch-departure decisions from various types of host patches and how previous patch experiences in the environment modify this decision-making process. Experiments were done with the parasitic wasp Aphidius rhopalosiphi attacking the grain aphid Sitobion avenae. In the experiments, wasps were observed in a laboratory environment containing several patches of various host densities, and behavioural records were analysed using a Coxs proportional hazards model. Consideration of the effect of the within-patch experience gave a classic pattern of patch-leaving decision rules in parasitoids: A. rhopalosiphi used local information on host quality (i.e. numbers of ovipositions or rejections) and availability (i.e. patch density) to determine departure decision. However, consideration of previous patch experiences provided evidence that these departure rules are fundamentally dynamic, responding to the physiological state of the animal and the information it has about its environment. Results showed that A. rhopalosiphi decreased its tendency to leave the visited patch after an oviposition. However, when a female has already laid several other eggs in the environment, such an incremental mechanism gradually switched to a decremental one. Hence, A. rhopalosiphi responded to egg-load depletion by leaving the visited patches sooner and by depositing a smaller number of eggs in those patches, which probably led to a decreased level of superparasitism. Results also indicated that previous experiences enabled wasps to estimate spatial host distribution and then to adjust their behavioural decisions accordingly. Thus, A. rhopalosiphi was shown to adjust its patch residence time according to the quality and the number of the patches previously visited. These proximate mechanistic rules adopted by A. rhopalosiphi females are discussed in the context of general predictions from optimality models.Communicated by D. Gwynne  相似文献   

16.
We determined the sex, order, and clutch size of eggs laid by the parasitoid wasp, Trichogramma pretiosum Riley, in the eggs of one of its natural hosts, Trichoplusia ni (Hübner). The parasitoid allocated sex non-randomly to hosts in the laboratory with a variance significantly less than that of a binomial (random) distribution, our null model. More clutches of two or more eggs contained a single male egg as the second or third egg laid than would be expected by chance and none contained two or more male eggs. T. pretiosum also increased the sex ratio (% male) of its offspring with increasing foundress numbers by increasing the frequency of male offspring as the second egg in a two-egg clutch allocated to unparasitized hosts and as the single egg allocated to previously parasitized hosts. These results indicate that T. pretiosum allocates the sex of its offspring precisely. Precise sex allocation is favored under local mate competition because it reduces variation in the number of sons per patch thus maximizing the number of inseminated daughters emigrating from the patch. Similar combinations of female and male offspring emerged from T. ni eggs parasitized by T. pretiosum in the field, again with a sex ratio variance less than that expected for a binomial distribution. These results strongly suggest that this parasitoid species manifests local mate competition.  相似文献   

17.
The theoretical value of encounters with parasitized hosts for parasitoids   总被引:1,自引:1,他引:0  
A female parasitoid searching for hosts in a patch experiences a diminishing encounter rate with unparasitized and thus suitable hosts. To use the available time most efficiently, it constantly has to decide whether to stay in the patch and continue to search for hosts or to search for and travel to another patch in the habitat. Several informational cues can be used to optimize the searching success. Theoretically, encounters with unparasitized hosts should lead to a prolonged search in a given patch if hosts are distributed contagiously. The results of empirical studies strongly support this hypothesis. However, it has, to date, not been investigated theoretically whether encounters with already parasitized hosts (which usually entail time costs) provide a parasitoid with valuable information for the optimization of its search in depletable patches, although the empirical studies concerning this question so far have produced ambiguous results. Building on recent advances in Bayesian foraging strategies, we approached this problem by modeling a priori searching strategies (which differ in the amount of information considered) and then testing them in computer simulations. By comparing the strategies, we were able to determine whether and how encounters with already parasitized hosts can yield information that can be used to enhance a parasitoid’s searching success.
Munjong KolssEmail: Phone: +41-26-3008856Fax: +41-26-3009698
  相似文献   

18.
Summary. Previous studies indicated the presence of antennally-active compounds in extracts of eggs laid by female cabbage root flies, Delia radicum, that stimulated oviposition by conspecific females. We confirmed that previously laid D. radicum eggs stimulated oviposition by other D. radicum females, in a dose-dependent manner. Methanol extracts of conspecific eggs stimulated oviposition by females D. radicum, whereas egg extracts of D. antiqua and Psila rosae had no effect. Electrophysiological recordings from the tarsal sensilla of D. radicum females indicated that neurones of the C5 sensillum responded to the egg extracts from both D. radicum and D. antiqua, but not P. rosae. Chemical analysis revealed that the extract of eggs from D. radicum contained the thia-triaza-fluorene compound, 1,2-dihydro-3-thia-4,10,10b-triaza-cyclopenta[.a.]fluorene-1-carboxylic acid (CIF-1), an oviposition stimulant found previously only in cruciferous plants. Another potentially active component has yet to be identified.  相似文献   

19.
Ormia ochracea is a parasitoid fly which lays its larvae on its hosts, the field crickets Gryllus integer and Gryllus rubens, in two distinct modes: (1) directly on the host and (2) around the host. In the field, 12.7% of male crickets were parasitized and 3.2% were super-parasitized. Despite the disadvantages of parasitizing infested hosts, there was no evidence that O. ochracea avoided superparasitism. This and other experiments suggest that the host assessment ability of O. ochracea is less than that reported for many hymenopteran parasitoids. by manipulating the number of larvae in each cricket, we determined that four to five larvae per host resulted in the largest number of adult flies. However, as larval number per host increased from one to six, pupal size, and hence adult size, declined. In the field, hosts were found with a mean of 1.7 ± 1.0 (SD) larvae per cricket, suggesting that there may be some selection pressure against larger clutch sizes. Nevertheless clutch sizes larger than the host can support were sometimes found in the field. During the first mode of larviposition, gravid flies deposited no more than three larvae directly onto the host. Larvae deposited directly on the host had a high probability of infesting it. During the second mode of larviposition, gravid flies laid a larger number of larvae around the host (6.1 ± 5.2). Larvae that were laid around the host were less likely to infest a cricket than were larvae that were deposited directly onto it. O. ochracea is unique in that its two different modes of larviposition have different probabilities of larval success. Even though the success rate for larvae laid during the second mode of larviposition was low, the possibility of parasitizing more hosts appears to have selected for flies laying more larvae (e.g. increasing clutch size) than is optimal if all the larvae successfully entered a single host.  相似文献   

20.
Summary. Cotesia plutellae is a specialist parasitoid of Plutella xylostella. This specificity is potentially under the control of several factors before and after oviposition. Thereby, the stimuli that lead female parasitoids to host locations and to oviposition, might be at the basis of the specificity. We explore here the response of C. plutellae females exposed to host cuticular lipids. A total cuticular lipid extract of host caterpillars was fractionated into a hydrocarbon fraction and a non-hydrocarbon fraction. Neither fraction alone had any effect on oviposition behaviour in C. plutellae but the hydrocarbon fraction alone did seem to have a positive effect on the rate of antennal contact by the females. To induce oviposition behaviour, both fractions were necessary and reflect cooperation between at least one compound in each fraction. Identification of cuticular lipids shows that hydrocarbons were dominant (77%). Non-hydrocarbon compounds were mainly represented by 15-nonacosanone (18% of the total lipid extract). This ketone is rare in insect cuticle lipids and is thought to originate from the cabbage epicuticle where it is dominant with n-C29 and 14- and 15-nonacosanol also found among the cuticular lipids of the host caterpillar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号