首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UCD/CIT air quality model was modified to predict source contributions to secondary organic aerosol (SOA) by expanding the Caltech Atmospheric Chemistry Mechanism to separately track source apportionment information through the chemical reaction system as precursor species react to form condensable products. The model was used to predict source contributions to SOA in Los Angeles from catalyst-equipped gasoline vehicles, non-catalyst equipped gasoline vehicles, diesel vehicles, combustion of high sulfur fuel, other anthropogenic sources, biogenic sources, and initial/boundary conditions during the severe photochemical smog episode that occurred on 9 September 1993. Gasoline engines (catalyst+non-catalyst equipped) were found to be the single-largest anthropogenic source of SOA averaged over the entire model domain. The region-wide 24-h average concentration of SOA produced by gasoline engines was predicted to be 0.34 μg m−3 with a maximum 24-h average concentration of 1.81 μg m−3 downwind of central Los Angeles. The region-wide 24-h average concentration of SOA produced by diesel engines was predicted to be 0.02 μg m−3, with a maximum 24-h average concentration of 0.12 μg m−3 downwind of central Los Angeles. Biogenic sources are predicted to produce a region-wide 24-h average SOA value of 0.16 μg m−3, with a maximum 24-h average concentration of 1.37 μg m−3 in the less-heavily populated regions at the northern and southern edges of the air basin (close to the biogenic emissions sources). SOA concentrations associated with anthropogenic sources were weakly diurnal, with slightly lower concentrations during the day as mixing depth increased. SOA concentrations associated with biogenic sources were strongly diurnal, with higher concentrations of aqueous biogenic SOA at night when relative humidity (RH) peaked and little biogenic SOA formation during the day when RH decreased.  相似文献   

2.
Black carbon (BC), an important component of the atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester, New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 μg/m3, 0.67 μg/m3, 0.60 μg/m3, and 0.52 μg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the U.S. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm – BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor. It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 μg/m3, 1.25 μg/m3, 1.13 μg/m3, and 0.97 μg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the U.S Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease of BC and PM2.5 concentrations during the study period.

Implications: This study suggests that there was an observable impact of the U.S EPA 2007 Heavy-Duty Highway Rule on the ambient black carbon concentrations in Rochester, New York. Aethalometer Delta-C was used as an input variable in source apportionment models and it allowed the separation of traffic (especially diesel) emissions from wood combustion emissions.  相似文献   

3.
The chemical and optical properties of particle emissions from onroad vehicles were investigated at the Allegheny Tunnel on the Pennsylvania Turnpike during July 1981. The optical results are in agreement with earlier data: (1) in terms of light extinction per km driven, diesel particle emissions are at least an order of magnitude more important than particle emissions from spark-ignition vehicles; (2) for diesel particle emissions, light absorption is about twice as efficient as light scattering. Chemical analyses showed that: (1) 24% of the vehicle aerosol was extractable material, (2) 75% of the total mass was carbon, (3) 55% of the total mass was unextractable (elemental) carbon, and (4) the stoichiometry of the extractable fraction of the diesel particle emissions was CnHt.7nN0.05n , i.e., the extractable material was composed predominantly of alkanes. The results of the chemical analyses allow the calculation of the massspecific light absorption coefficient for the elemental carbon component of the diesel particle emissions, i.e., 10.9 ± 1.8 m2/g (500 nm).  相似文献   

4.
The size and chemical composition of individual diesel exhaust particles were measured in order to determine unique mass spectral signatures that can be used to identify particle sources in future ambient studies. The exhaust emissions from seven in-use heavy-duty diesel vehicles (HDDVs) operating on a chassis dynamometer were passed through a dilution tunnel and residence chamber and analyzed in real time by aerosol time-of-flight mass spectrometry (ATOFMS). Seven distinct particle types describe the majority of particles emitted by HDDVs and were emitted by all seven vehicles. The dominant chemical types originated from unburned lubricant oil, and the contributions of the various types varied with particle size and driving conditions. A comparison of light-duty vehicle (LDV) exhaust particles with the HDDV signatures provide insight into the challenges associated with developing an accurate source apportionment technique and possible ways of how they may be overcome.  相似文献   

5.
A modified factor analysis/multiple regression (FA/MR) receptor-oriented source apportionment model has been developed which permits application of FA/MR statistical methods when some of the tracers are not unique to an individual source type. The new method uses factor and regression analyses to apportion non-unique tracer ambient concentrations in situations where there are unique tracers for all sources contributing to the non-unique tracer except one, and ascribes the residual concentration to that source. This value is then used as the source tracer in the final FA/MR apportionment model for ambient paniculate matter. In addition, factor analyses results are complemented with examination of regression residuals in order to optimize the number of identifiable sources.The new method has been applied to identify and apportion the sources of inhalable particulate matter (IPM; D5015 μm), Pb and Fe at a site in Newark, NJ. The model indicated that sulfate/secondary aerosol contributed an average of 25.8 μ−3 (48%) to IPM concentrations, followed by soil resuspension (8.2 μ−3 or 15%), paint spraying/paint pigment (6.7/gmm−3or 13%), fuel oil burning/space heating (4.3 μ−3 or 8 %), industrial emissions (3.6 μm−3 or 7 %) and motor vehicle exhaust (2.7 μ−3 or 15 %). Contributions to ambient Pb concentrations were: motor vehicle exhaust (0.16μm−3or 36%), soil resuspension (0.10μm−3 or 24%), fuel oil burning/space heating (0.08μm−3or 18%), industrial emissions (0.07 μ−3 or 17 %), paint spraying/paint pigment (0.036 μm−3or 9 %) and zinc related sources (0.022 μ−3 or 5 %). Contributions to ambient Fe concentrations were: soil resuspension (0.43μ−3or 51%), paint spraying/paint pigment (0.28 μm−3or 33 %) and industrial emissions (0.15 μ−3or 18 %). The models were validated by comparing partial source profiles calculated from modeling results with the corresponding published source emissions composition.  相似文献   

6.
The emissions of diesel vehicles mainly contain soot, which is difficult to distinguish from soot originating from other sources. The use of a tracer which can be detected in extremely low mass concentrations and does not occur normally in the atmospheric aerosol can help to differentiate between aerosols from different sources. The rare earth element Dysprosium has proven useful for this purpose. It can be detected by neutron activation analysis in quantities of nanograms and does not occur naturally.An organic, diesel soluble Dysprosium compound was added to the fuel. During the combustion process the Dysprosium is oxidized and attaches to the formed soot particles. For the atmospheric filter samples an extraction technique was used.This marking method has been successfully applied for an extended field experiment.  相似文献   

7.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

8.
Number distribution data for 0.1–45 μm diameter aerosol were obtained using optical counting and sizing probes flown over the Alaskan Arctic during the second Arctic Gas and Aerosol Sampling Program (AGASP-II), flights 201–203. Due to noise present in the lowest size channels of the optical probes, estimates of the H2SO4 component of Arctic haze were not attempted. Large particle (> 0.5 μm diameter) results are presented here. Large particle number and volume concentration were determined along with estimated mass, which was generally </ 0.1μg m−3. Lognormal fitting to > 0.3 μg m−3 mass loading sizedistributed aerosol data produced a means for comparing volume geometric median diameters (VGMD) for these higher-mass time intervals. These VGMDs showed that solid crustal particles previously observed during AGASP-II had VGMDs in the 1.2–1.6 μm range and that the shape of these fitted lognormal distributions was essentially constant. This result suggests very-long-range transport from a distant crustal source and, in conjunction with aerosol physical and chemical characterization data, argues against the presence of the Mt. Augustine eruptive particles during AGASP-II Alaskan Arctic sampling.  相似文献   

9.
Stable isotopic tracers were used in Roanoke, Virginia, to tag particulate emissions from diesel trucks and residential oil furnaces, two sources of soot and PAHs which cannot be differentiated on the basis of known constituents. Approximately 1.6 g of enriched 149Sm were used to tag 264 m3 of diesel fuel burned by the city bus and truck fleets; 0.39 g of 150Sm were used to tag 106 m3 of residential heating oil. Picogram amounts of the tracers were determined simultaneously by thermal-ionization mass spectrometry in fine particles collected within the city at signal-to-noise ratios as large as 6000. These results demonstrate the feasibility of tracing particles from multiple combustion sources with stable, separated isotopes.  相似文献   

10.
In this study, the BC aerosol measured at two very different urban sites is compared in terms of concentration, seasonal variation, and size distribution. During a 14 month study, one impactor sample was performed each month on a day with typical meteorological conditions. One (Vienna) or three (Uji) filter samples were obtained during the sampling time of the impactors. BC concentration in both the filter and impactor samples was analyzed with an optical technique (integrating sphere technique), where a calibration curve obtained from commercial carbon black is used to convert the optical signal to BC mass. Gravimetric mass concentration was measured at both sites. The gravimetric mass size distribution was measured only in Vienna. At both sites, the yearly average of the BC concentration on the sampling days was around 5 μg m−3. In Vienna, some seasonal trend with high concentrations during the cold season was observed, while in Uji, no pronounced seasonal trend was found. The BC size distribution in Uji was distinctly bimodal in the submicron size range. Log-normal distributions were fitted through the impactor data. The average BC mass median diameters (MMD) of the two submicron modes were 0.15 and 0.39 μm. Each mode contained about the same amount of BC mass. In Vienna only one submicron BC mode (average MMD 0.3 μm) was found because of the low size resolution of the impactor. An analysis of humidity effects on the MMDs of BC (both sites) and gravimetric mass (Vienna only) indicates that the Vienna aerosol is partly mixed internally with respect to BC, while the Uji aerosol seems to be externally mixed.  相似文献   

11.
Marine aerosols were collected using a five-stage cascade impactor during the PHYCEMED II cruise in the Western Mediterranean Sea (October 1983). Their composition in aliphatic and aromatic hydrocarbons (HCs) was analyzed, representing the first time that concentrations of polynuclear aromatic HCs (PAH) are reported in relation to particle size for aerosols of remote marine areas. The HC concentrations were found to be dependent on the origin of the air masses. They were higher for air coming from North European countries than for air originating in the Atlantic and the South of Spain. The concentrations range between 7 and 14 ng m−3for n-alkanes and between 0.2 and 0.4 ng m−3for total PAH. Based on molecular criteria, several sources for these HCs have been identified: continental higher plant waxes, petroleum and pyrolysis (namely coal combustion and vehicular exhausts). Mass medium equivalent diameters (MMED) for the naturally derived n-alkanes are in the 1.79-2.53 μm range, indicating an origin related with the emission of large particles from higher plant waxes or from soil dusts. In contrast, MMED for the anthropogenic HCs, both aliphatic and aromatic, are smaller than the micron, suggesting initial emission of PAH through pyrolytic processes in the vapor phase followed by condensation onto larger sub-μm particles.  相似文献   

12.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

13.
Optical, filter chemistry, and cascade impactor data collected during the winter intensive of the IMS95 Study in the San Joaquin Valley (SJV) of California were analyzed to determine the light-extinction efficiency of aerosol species. Regression of light scattering by particles (bsp) measured by a heated nephelometer without a size selective inlet against PM2.5 front filter mass gave a scattering efficiency of 3.67±0.05 m2/g with an R2 (fraction of variance explained) of 0.94. Division of the aerosol into two components and applying two different corrections to the filter data for nitrate and organic carbon on the backup filter gave scattering efficiencies of 3.7±0.3 or 4.1±0.2 m2/g for the salts composed of sulfate, nitrate, and ammonium and 2.9±0.2 or 3.1±0.2 m2/g for all other species with R2 of 0.985 and 0.986. The ambient bsp measured by an open nephelometer was a simple function of PM2.5 mass and relative humidity (RH), giving R2 of 0.90 and 0.88 for two different RH sensors. Variations in PM2.5 size distribution and composition did not have an important effect on ambient bsp. The RH data from each sensor were repeatable enough to show the existence of a simple dependence of aerosol water uptake on RH, but RH sensor calibration uncertainties prevented determining this dependence. Inversion of MOUDI cascade impactor data gave sulfate and nitrate mass median diameters (MMD) between 0.4 and 0.8 μm. Mie scattering calculations based on MOUDI data provided humidity-dependent extinction efficiencies for the principal aerosol chemical species. These efficiencies combined with particle filter data showed that ammonium nitrate was the dominant contributor to wintertime light extinction. Source apportionment showed that light extinction was dominated by emissions sources contributing to the formation of secondary species, especially nitrate. These wintertime data are not expected to apply to summertime in the SJV.  相似文献   

14.
During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L−1) was substantially higher than total mercury content in diesel fuel (62±37 ng L−1) collected contemporaneously at local Baltimore retailers.  相似文献   

15.
We investigate how a recently suggested pathway for production of secondary organic aerosol (SOA) affects the consistency of simulated organic aerosol (OA) mass in a global three-dimensional model of oxidant-aerosol chemistry (GEOS-Chem) versus surface measurements from the interagency monitoring of protected visual environments (IMPROVE) network. Simulations in which isoprene oxidation products contribute to SOA formation, with a yield of 2.0% by mass reduce a model bias versus measured OA surface mass concentrations. The resultant increase in simulated OA mass concentrations during summer of 0.6–1.0 μg m−3 in the southeastern United States reduces the regional RMSE to 0.88 μg m−3 from 1.26 μg m−3. Spring and fall biases are also reduced, with little change in winter when isoprene emissions are negligible.  相似文献   

16.
Abstract

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 μm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7?2.2 ppm, 3.4?10.0 μg/m3, 1.3?2.0 × 105/cm3, and 30.2?64.6 μ/m3, respectively.

For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6–220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 × 105/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

17.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

18.
Dimethyl sulfide (DMS) and atmospheric aerosols were sampled simultaneously over the Atlantic Ocean in the vicinity of Bermuda using the NOAA King Air research aircraft. Total and fine (50% cutoff at 2 μm diameter) aerosol fractions were sampled using two independent systems. The average nonsea-salt (nss)SO42− concentrations were 1.9 and 1.0 μg m−3 (as SO42−) for the total and the fine fractions in the boundary layer (BL) and 0.53 and 0.27 μg m−3 in the free troposphere (FT). Non-sea-salt SO42− in the two aerosol fractions were highly correlated (r = 0.90), however a smaller percentage (55%) was found in the fine aerosol near Bermuda relative to that (90%) near the North American continent. The BL SO42− concentrations measured in this study were higher than those measured by others at remote marine locations despite the fact that the 7-day air mass back trajectories indicated little or no continental contact at altitudes of 700 mb and below; the trajectories were over subtropical oceanic areas that are expected to be rich in DMS. DMS concentrations were higher near the ocean surface and decreased with increasing altitude within the BL; the average DMS concentration was 0.13 μg m−3. Trace levels of DMS were also measured in the FT (0.01 μg m−3). Computer simultation of the oxidation and removal of DMS in the marine atmosphere suggests that <50% of the SO42− observed could be related to the natural S cycle.  相似文献   

19.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

20.
In order to characterize atmospheric aerosol in the São Paulo Metropolitan Area, aerosols were sampled during the winter months of August 1999 and August 2000. A micro-orifice uniform deposit impactor (MOUDI) was used. Samples were submitted to gravimetry, as well as to proton-induced X-ray emission (PIXE), carbon (black and organic) and ion-chromatography analysis. These analyses supplied information about mass concentrations and physicochemical properties of the particles. Due to the higher humidity, which can increase soluble particles diameters, and reduced atmospheric stagnation seen in 2000, average PM10 concentrations were higher (105 μg m−3) in the winter of 1999 than in the winter of 2000 (60 μg m−3). The PIXE analysis revealed metals and metal compounds, soil-derived elements, Si-rich particles, sulfates, carbonates, chlorides and other anthropogenic air-borne particles, supposing molecules in their usual composition. Mass balance for PM2.5 revealed significant participation of organic and black carbon, probably resulting from diesel burning by the heavy-duty fleet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号