首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

2.
Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5–10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.  相似文献   

3.
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.  相似文献   

4.
In a previous paper,1 we showed that the mean effects on daily mortality associated with air pollution are essentially the same for gases and particulate matter (PM) and are invariant with respect to particle size and composition, based on 27 statistical studies that had been published at that time. Since then, a new analysis2 reported stronger mortality associations for the fine fractions of PM obtained from dichotomous samplers, relative to the coarse fractions. In this paper, we show that differential measurement errors known to be present in dichotomous sampler data preclude reliable determination of such statistical relationships by particle size. Further, it is necessary to consider gaseous pollutants simultaneously with particles to provide robust estimates of the responsibilities for the implied daily mortality gradients. Finally, certain regression model specifications may be sensitive to differences in frequency distribution characteristics according to particle size.  相似文献   

5.
Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.  相似文献   

6.
In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. The cost and complexity of existing monitoring equipment, combined with the need to sample many locations, make routine quantification of household particle pollution levels difficult. Recent advances in technology, however, have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravimetric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented here. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse (mass median diameter, 2.1 microm) and fine (mass median diameter, 0.27-0.42 microm) size distributions (average r2 = 0.997 +/- 0.005). The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries.  相似文献   

7.
Final design, calibration, and field testing have been completed for a new 1.13 m3/min (40 cfm) High-volume Virtual Impactor (HVVI). Field tests have demonstrated that the new classifier/collector works well as an accessory to the existing PM10 Size Selective Inlet high-volume samplers. The HVVI provides two fractions of PM10 mass, both of which are collected by filtration. The fine fraction (0-2.5 μm aero. dia.) Is collected on the standard 20.3 × 25.4 cm (8- × 10-in) high-volume filter; the coarse fraction (2.5-10 μm aero. dia.) is collected on a 5.1 × 15.2 cm (2- × 6-in) filter. Coarse flow through the receiver tubes is limited to 0.057 m3/min (2 cfm), 5 percent of the total flow.

The operating pressure drop across the HVVI stages Is sufficiently high to make changes In pressure across the collection filters Insignificant. The HVVI filter holder assembly facilitates loading/ unloading samples in the laboratory, thus eliminating damage due to handling filters in the field. Size separation characteristics of the HVVI agree well with those for the 16.7 L/min commercially available dichotomous sampler with the 50 percent effectiveness (cut-point) occurring at 2.5 μm. Applying laboratory-determined particle losses to the typical ambient particle mass size distribution described In Federal Register 49, 40 CFR, Part 53, Table D-3, the HVVI fine fraction total mass loss is less than 0.8 percent for liquid particles and less than 0.1 percent for solid particles; coarse fraction total mass loss is less than 2.5 percent for liquid particles, and less than 0.2 percent for solid particles.  相似文献   

8.
Outdoor and indoor fine particulate species were measured at the Lindon Elementary School in Lindon, Utah, to determine which components of ambient fine particles have strong indoor and outdoor concentration correlations. PM2.5 mass concentrations were measured using tapered element oscillating microbalance (TEOM) monitors and by gravimetric analysis of Teflon filter samples. Gas-phase HNO3, sulfur dioxide, particulate nitrate, strong acid, and particulate sulfate were measured using annular denuder samplers. Soot was measured using quartz filters in filter packs. Total particulate number was measured with a condensation nucleus counter (CNC). Total particulate number and fine particulate sulfate and soot were correlated for ambient and indoor measurements. Indoor PM2.5 mass showed a low correlation with outdoor PM2.5 mass because of the influence of coarse material from student activities on indoor PM2.5. Fine particle acidity and the potentiation of biological oxidative mechanisms by iron were not correlated indoors and outdoors.  相似文献   

9.
Fang GC  Chang CN  Wu YS  Wang NP  Wang V  Fu PP  Yang DG  Che SC 《Chemosphere》2000,41(9):1349-1359
Aerosol samples for PM2.5, PM(2.5-10) and TSP were collected from June to September 1998 and from February to March 1999 in central Taiwan. Ion chromatography was used to analyze the acidic anions: sulfate, nitrate and chloride in the Universal samples. The ratios of fine particle concentrations to coarse particle concentrations displayed that the fine particle concentrations are almost greater than that of coarse particle concentrations in Taichung area. The average concentrations of PM2.5, PM(2.5-10) and TSP in urban sites are higher than in suburban and rural sites at both daytime and night-time. Chloride dominated in the coarse mode in daytime and in fine mode in night-time. Nitrate can be found in both the coarse and fine modes. Sulfate dominated in fine mode in both daytime and night-time.  相似文献   

10.
Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4(-2) and OC that may represent coal-fired power plant emissions. For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.  相似文献   

11.
Kim KH  Kim MY  Hong SM  Youn YH  Hwang SJ 《Chemosphere》2005,59(7):929-937
The concentrations of three different size fractions of particulate matter (PM) including PM2.5, PM10, and TSP were determined continuously at hourly intervals from four different sites in Seoul, Korea during the spring of 2001. To learn the effects of wind speed change on PM fractionation, the entire data sets were initially sorted into three particle fractions such as: fine (F: PM2.5), coarse (C: PM10-PM2.5), and giant (G: TSP-PM10). The inter-fraction relationships of PM were then explored by linear regression analysis of the data divided into four wind speed regimes. The results of this analysis, when examined in terms of either relative dominance between different PM fractions (i.e., in terms of their slope values) or strength of correlations, indicate the existence of diverse inter-fraction patterns. Most importantly, the physical influence of wind speed is seen to be reflected most efficiently between fine and coarse particle fractions, as the relative contribution of coarse fraction to the mass concentration of total particles (e.g., PM10) changes proportionally with changes in wind speed. However, such systematic patterns decrease noticeably between fine and giant fractions, as they can be affected more sensitively by such factors as the nature of their sources or the surrounding environmental conditions. The results of our comparative analysis thus confirm that wind speed is a useful barometer to distinguish and predict the behavior of different particle fractions in relation to each other.  相似文献   

12.
The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

13.
Abstract

In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. The cost and complexity of existing monitoring equipment, combined with the need to sample many locations, make routine quantification of household particle pollution levels difficult. Recent advances in technology, however, have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravi-metric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented here. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse (mass median diameter, 2.1 µm) and fine (mass median diameter, 0.27–0.42 µm) size distributions (average r2 = 0.997 ± 0.005). The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries.  相似文献   

14.
A periodic review of the National Ambient Air Quality Standards for Particulate Matter by the U.S. Environmental Protection Agency (EPA) will assess the standards with respect to levels, particle size, and averaging times. Some members of the scientific community in the United States and Europe have suggested the use of PM1 instead of PM2.5 as the fine particle measurement standard. This proposed standard is intended to reduce the influence of coarse particle sources on PM2.5, because some evidence suggests that PM1-2.5 is dominated by coarse particulate matter (PM) sources. In this study, coarse (PM2.5-10), intermodal (PM1-2.5), and fine (PM2.5) mass concentrations at four different sites are measured with continuous and time-integrated sampling devices. The main objective is to compare variations in these three size ranges while considering the effects of location, sources, weather, wind speed, and wind direction. Results show strong correlations between PM1 and intermodal PM in receptor sites. The contribution of PM1-2.5 to PM2.5 is highest in the summer months, most likely due to enhanced long-range transport. Coarse PM is poorly correlated with intermodal PM. Continuous data suggest that PM1 is growing into PM1-2.5 via complex processes involving stagnation of the aerosol during high relative humidity conditions, followed by advection during daytime hours.  相似文献   

15.
Atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands, which is isolated by approximately 1000km from the main island of Japan in the Pacific Ocean, were investigated by using an Andersen sampler. The ratio of Na to Cl in the aerosol was almost consistent with that in seawater. The Cl discrepancy of 3.1 % to total Cl amount on the mole basis was explained by the Cl loss from a sea salt particle through the formation of NaNO3. Al and V were considered to be derived from soil and fuel oil burning fly ash which were distributed dominatively in the coarse and fine particle ranges, respectively. It was shown that most of the nitrate consisted of NaNO3 which was distributed in the coarse particle range. In addition, a very small amount of NH4NO3 was observed with a peak in the fine particle range. The sulfate was found to be distributed in a bimodal form with a peak in the coarse particle range which was derived from seawater, and a peak in the fine particle range which would be ascribed to sulfate converted from oceanic DMS. Finally, the inventory of total suspended particulate matter was presented.  相似文献   

16.
ABSTRACT

Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4 -2 and OC that may represent coal-fired power plant emissions.

For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.  相似文献   

17.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

18.
Abstract

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

19.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

20.
Samples of fine and coarse fractions of airborne particulate matter were collected at the Farm Gate area in Dhaka from July 2001 to March 2002. Dhaka is a hot spot area with very high pollutant concentrations because of the proximity of major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0- to 2.2-microm and 2.2- to 10-microm sizes. The samples were analyzed for elemental concentrations by particle-induced X-ray excitation (PIXE) and for black carbon by reflectivity methods, respectively. The data were analyzed by positive matrix factorization (PMF) to identify the possible sources of atmospheric aerosols in this area. Six sources were found for both the coarse and fine PM fractions. The data sets were also analyzed by an expanded model to explore additional sources. Seven and six factors were obtained for coarse and fine PM fractions, respectively, in these analyses. The identified sources are motor vehicle, soil dust, emissions from construction activities, sea salt, biomass burning/brick kiln, resuspended/fugitive Pb, and two-stroke engines. From the expanded modeling, approximately 50% of the total PM2.2 mass can be attributed to motor vehicles, including two-stroke engine vehicle in this hot spot in Dhaka, whereas the PMF modeling indicates that 45% of the total PM2.2 mass is from motor vehicles. The PMF2 and expanded models could resolve approximately 4% and 3% of the total PM2.2 mass as resuspended/fugitive Pb, respectively. Although, Pb has been eliminated from gasoline in Bangladesh since July 1999, there still may be substantial amounts of accumulated lead in the dust near roadways as well as fugitive Pb emissions from battery reclaimation and other industries. Soil dust is the largest component of the coarse particle fraction (PM2.2-10) accounting for approximately 71% of the total PM2.2-10 mass in the expanded model, whereas from the PMF modeling, the dust (undifferentiated) contribution is approximately 49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号