首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Shanghai Meteorological Administration has established a volatile organic compounds (VOCs) laboratory and an observational network for VOCs and ozone (O3) measurements in the city of Shanghai. In this study, the measured VOCs and O3 concentrations from 15 November (15-Nov) to 26 November (26-Nov) of 2005 in Shanghai show that there are strong day-to-day and diurnal variations. The measured O3 and VOCs concentrations have very different characterizations between the two periods. During 15-Nov to 21-Nov (defined as the first period), VOCs and O3 concentrations are lower than the values during 22-Nov to 28-Nov (defined as the second period). There is a strong diurnal variation of O3 during the second period with maximum concentrations of 40–80 ppbv at noontime, and minimum concentrations at nighttime. By contrast, during the first period, the diurnal variation of O3 is in an irregular pattern with maximum concentrations of only 20–30 ppbv. The VOC concentrations change rapidly from 30–50 ppbv during the first period to 80–100 ppbv during the second period. Two chemical models are applied to interpret the measurements. One model is a regional chemical/dynamical model (WRF-Chem) and another is a detailed chemical mechanism model (NCAR MM). Model analysis shows that the meteorological conditions are very different between the two periods, and are mainly responsible for the different chemical characterizations of O3 and VOCs between the two periods. During the first period, meteorological conditions are characterized by cloudy sky and high-surface winds in Shanghai, resulting in a higher nighttime planetary boundary layer (PBL) and faster transport of air pollutants. By contrast, during the second period, the meteorological conditions are characterized by clear sky and weak surface winds, resulting in a lower nighttime PBL and slower transport of air pollutants. The chemical mechanism model calculation shows that different VOC species has very different contributions to the high-ozone concentrations during the second period. Alkane (40 ppbv) and aromatic (30 ppbv) are among the highest VOC concentrations observed in Shanghai. The analysis suggests that the aromatic is a main contributor for the O3 chemical production in Shanghai, with approximately 79% of the O3 being produced by aromatic. This analysis implies that future increase in VOC (especially aromatic) emissions could lead to significant increase in O3 concentrations in Shanghai.  相似文献   

2.
The annual cycles of hydrogen peroxide (H2O2) and methylhydroperoxide (MHP) have been investigated at a remote site in Antarctica in order to study seasonal variations as well as chemical processes in the troposphere. The measurements have been performed from March 1997 to January 1998 and in February 1999 at the German Antarctic research station Neumayer which is located at 70°39′S, 8°15′W. The obtained time series for hydrogen peroxide and methylhydroperoxide in near-surface air represents the first all-year measurements in Antarctica and indicates clearly the occurrence of seasonal variations. During polar night mean values of 0.054±0.046 ppbv (range<0.03–0.11 ppbv) for hydrogen peroxide and 0.089±0.052 ppbv (range<0.05–0.14 ppbv) for methylhydroperoxide were detected. At the sunlit period higher Mixing ratios were found, 0.20±0.13 ppbv (range<0.03–0.91 ppbv) for hydrogen peroxide and 0.19±0.10 ppbv (range<0.05–0.89 ppbv) for methylhydroperoxide. Occasional long-range transport of air masses from mid-latitudes caused enhanced peroxide concentrations at polar night. During the period of stratospheric ozone depletion we observed peroxide mixing ratios comparable to typical winter levels.  相似文献   

3.
The oxidation of SO2 to sulfate in air at 65%, relative humidity on carbon particles was investigated gravimetrically in the presence of NO2 and O3. Approximately 1 mg samples of carbon black were exposed to continuously flowing ppbv mixtures of SO2, SO2 + NO2 and SO2 + O3 for prescribed periods of time before desorption into dry N2. Wet chemical analysis of the particles followed desorption. NO2 and O3 were found to have little, if any, effect relative to air on sulfate yields at the concentrations studied.  相似文献   

4.
As the host city of the 2008 Olympic games, Beijing implemented a series of air pollution control measures before and during the Olympic games. Ambient formaldehyde (HCHO) concentrations were measured using a fluorometric instrument based on a diffusion scrubber and the Hantzsch reaction; hydrocarbons were simultaneously measured using gas chromatography–mass spectrometry (GC–MS). Meteorological parameters, CO, O3, and NO2 concentrations were measured by standard commercial instrumentation. In four separate periods: (a) before the vehicle plate number control (3–19 July); (b) during the Olympic Games (8–24 August); (c) during the Paralympic Games (6–17 September) and (d) after the vehicle control was ceased (21–28 September), the average HCHO mixing ratios were 7.31 ± 2.67 ppbv, 5.54 ± 2.41 ppbv, 8.72 ± 2.48 ppbv, and 6.42 ± 2.79 ppbv, while the total non-methane hydrocarbons (NMHCs) measured were 30.41 ± 18.08 ppbv, 18.12 ± 9.38 ppbv, 30.50 ± 13.37 ppbv, and 33.33 ± 15.85 ppbv, respectively. Both HCHO and NMHC levels were the lowest during the Olympic games, and increased again during the Paralympic games even with the same vehicle control measures operative. Similar diurnal HCHO and O3 patterns indicated that photo-oxidation of NMHCs may be the major source of HCHO. The diurnal profile of total NMHCs was very similar to that of NO2 and CO: morning and evening peaks appeared in rush hours, indicating even after strict vehicle control, automobile emission may still be the dominant source of the HCHO precursors. The contributions of HCHO, alkanes, alkenes, and aromatics to OH loss rates were also calculated. HCHO contributed 22 ± 3% to the total VOCs and 24 ± 1% to the total OH loss rate. HCHO was not only important in term of abundance, but also important in chemical reactivity in the air.  相似文献   

5.
Mohamed MF  Kang D  Aneja VP 《Chemosphere》2002,47(8):863-882
Volatile organic compounds (VOCs) have been determined to be human risk factors in urban environments, as well as primary contributors to the formation of photochemical oxidants. Ambient air quality measurements of 54 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in or near 13 urban locations in the United States during September 1996 to August 1997. Air samples were collected and analyzed in accordance with US Environmental Protection Agency-approved methods. The target compounds most commonly found were benzene, toluene, xylene and ethylbenzene. These aromatic compounds were highly correlated and proportionally related in a manner suggesting that the primary contributors were mobile sources in all the urban locations studied. Concentrations of total hydrocarbons ranged between 1.39 and 11.93 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations, and no single factor seemed to explain trends for this group of compounds. The highest halogenated hydrocarbon concentrations ranged from 0.24 ppbv for methylene chloride to 1.22 ppbv for chloromethane. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly influence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde.  相似文献   

6.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

7.
The use of alcohol fuel has received much attention since 1980s. In Brazil, ethanol-fueled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol, ethanol and isopropanol concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used, and from 3 to 9 February 1998, in Sao Paulo, Brazil, where ethanol fuel was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8±3.8, 8.2±4.6, and 7.2±5.9 ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1±9.2, 176.3.±38.1, and 44.2±13.7 ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average concentration measured in Osaka was 1.9±0.9 ppbv, and the average acetaldehyde concentration was 1.5±0.8 ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0±2.8 and 5.4±2.8 ppbv, respectively. The C2H5OH/CH3OH and CH3CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fueled vehicles, these ratios, especially C2H5OH/CH3OH, are much higher in Brazil than these measured elsewhere in the world.  相似文献   

8.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

9.
Soybean percent crop reduction was estimated as a function of ambient O3 concentrations for each of 80 agricultural sites in the National Aerometric Data Bank (NADB) for each available year of data for years 1981-1985. Fourteen O3 concentration statistics were calculated for each of the resulting 320 site-years of data. The two statistics that correlated best with estimated crop reduction were an effective mean O3 concentration (1 percent of variance unexplained) and an arithmetic mean O3 concentration (4 percent unexplained). The worst correlation of the 14 was for the statistic used in the present O3 National Ambient Air Quality Standard (NAAQS), the second highest daily maximum 1-h O3 concentration (42 percent unexplained). The number of site-years for estimated percent soybean yield reductions was plotted versus increasing O3 concentrations for each of the 14 O3 statistics. A maximum crop reduction line was drawn on each plot. These lines were used to estimate (and list) potential ambient O3 standards for each of the 14 statistics that would limit soybean crop reduction at agricultural. NADB sites to 5, 10, 15, or 20 percent.  相似文献   

10.
The effect of HOx radicals (OH and HO2) and ozone (O3) on aerosol formation and aging has been studied. Experiments were performed in presence as well as in absence of oxygen in a flow-through chamber at 299 K for three organic precursor gases, isoprene, α-pinene and m-xylene. The HOx source was the UV photolysis of humidified air or nitrogen and was measured with a GTHOS (Ground-based Tropospheric Hydrogen Oxides Sensor). The precursor gases concentration was monitored with an online GC-FID. The aerosol mass was then quantified by a Tapered Element Oscillating Microbalance (TEOM). Typical oxidant mixing ratios were (0–4.5) ppm for O3, 200 pptv for OH and 3 ppbv for HO2. A simple kinetics model is used to infer the aerosol production mechanism. In the present of O3 (or O2), the SOA yields were 0.46, 0.036 and 0.12 for α-pinene with an initial concentration of 100 ppbv (RH = 37%), isoprene with an initial concentration of 177 ppbv (RH = 50%) and m-xylene with an initial concentration of 100 ppbv (RH = 37%), respectively. When the chosen precursor gases reacted with HOx in the absence of O3, the maximum SOA yields were significantly increased by factors of 1.6 for isoprene 1.1 for α-pinene, and 3 for m-xylene respectively. The comparison of the calculated and measured potential aerosol mass concentrations as function of time shows that presence of ozone or oxygen can influence the aerosol yield and the absence of ozone or oxygen in the system resulted in high concentrations of its organic aerosol products.  相似文献   

11.
A plant injury mathematical model, applied previously to acute and chronic leaf injury data, is used here to model National Crop Loss Assessment Network (NCLAN) data for 15 cultivars and to calculate species parameters from the cultivar analyses. Percent crop yield reduction is estimated as a function of a new parameter, the effective mean O3 concentration: me = [(Σ ch ?1/v)/n]?v, where ch is the hourly average ambient O3 concentration for each daytime hour (defined here as 9:00 A.M.–4:00 P.M., always standard time) of data available at an air sampling site for summer (defined here as June 1–August 31), n is the total number of such available hours, and v is an exposure time-concentration parameter, calculated here to be approximately –0.376. Crop yield reduction for soybean is calculated here as z = 0.478 In (tme 2-66) – 0.42, where z is the Gaussian transform of percent crop reduction, t is the hours of exposure (525 h is used here; 7 h/day for 75 days), and In indicates that the natural logarithm is taken of the quantity within parentheses. Crop yield reductions for seven plant species are estimated with similar equations for each of the 1824 site-years of 1981–1983 hourly O3 concentration data available in the National Aerometric Data Bank (NADB). County-average effective mean O3 concentrations are indicated by shading on a U.S. map. State-average O3 parameters and estimated percent crop yield reductions are tabulated. The National Ambient Air Quality Standard (NAAQS) for O3 specifies that, on the average, the second highest daily maximum 1-h average O3 concentration in a year shall not exceed 0.12 ppm. For years 1981-1983,71% of the NADB sites recorded annual second highest daily maximum 1-h average O3 concentrations below 0.125 ppm (for summer daytime hours). Ambient O3 concentrations reduced the total U.S. crop yield an estimated 5% for years 1981–1983. (Summer, daytime, and all acronyms are always used herein as defined above.)  相似文献   

12.
Studies on impacts of air pollutants on vegetation have focused primarily on individual pollutants: ozone, sulfur dioxide and nitrogen dioxide. The impacts of pollutant combinations have not been extensively studied and there has been no concerted effort to ensure that experimental regimes for combined pollutant exposures are representative of ambient pollutant concentration, frequency, duration and time intervals between events. Most studies concerning the impact of pollutant combinations on vegetation have used concentrations of 0.05 ppm and greater. Therefore, co-occurrence was defined as the simultaneous occurrence of hourly averaged concentrations of 0.05 ppm or greater for pollutant pairs (SO2/NO2, O3/SO2, or O3/NO2). Air quality information from three data bases (EPA-SAROAD, EPRI-SURE and TVA) was analyzed to determine the frequency of co-occurrence for pollutant pairs. Ambient air quality data representing a diverse range of monitoring sites (e.g. rural, remote, city center, urban, near urban, etc.) were used in the analysis. Results showed that at most sites (1) the co-occurrence of two-pollutant mixtures lasted only a few hours per episode, (2) the time interval between episodes was generally large (weeks, sometimes months) and (3) most studies have used more intense exposure regimes than occurred at most monitored sites. When designing vegetation experiments for assessing pollutant mixture effects, it may be desirable to give greater emphasis to sequential patterns of exposure. It is suggested that future work is required before a reliable estimate can be made of the environmental significance of pollutant mixtures on vegetation.  相似文献   

13.
Since 2005, Shanghai Meteorological Bureau (SMB) has established an observational network for measuring VOC, NOx, O3 and aerosols in the Shanghai region. In this study, a rapid O3 changes from Aug/02/2007 to Aug/11/2007 was observed in the region. During this 10 day period, the noontime O3 maximum decreased from 100 to 130 ppbv to about 20–30 ppbv. In order to analyze the processes in controlling this rapid change of O3 during this short period, a newly developed regional chemical/dynamical model (WRF-Chem) is applied to study O3 variability in the Shanghai region. The model performances are evaluated by comparing the model calculation to the measurement. The result shows that the calculated magnitudes and diurnal variations of O3 are close to the measured results in city sites, but are underestimated at a rural petroleum industrial site, suggesting that the emissions from petroleum factories around this rural site are significantly underestimated and need to be improved. The calculated rapid changes of O3 concentrations, O3 precursors, and aerosols are consistent with the measured results, suggesting that the model is suitable to study the causes of this rapid O3 change. The model analysis indicates that weather conditions play important roles in controlling the surface O3 in the Shanghai region. During summer, there is a persistent sub-tropical high pressure system (SUBH) in southeast of Shanghai over Pacific Ocean. During the earlier time of the period (Aug/02–Aug/05), the SUBH system was weak, resulting in weak surface winds. With the calm winds, a noticeable noontime sea-breeze produced an inflow from ocean to land, generating a cycling pattern of wind directions. As a result, the high O3 concentrations were trapped in the Shanghai region, with a maximum concentration of 100–130 ppbv. By contrast, during the later time of the period (Aug/06–Aug/11), the SUBH was enhanced, resulting in strong surface winds. The high O3 concentrations formed in the city were rapidly transported to the downwind region of the city, resulting in low O3 concentrations in the Shanghai region. This study illustrates that the WRF-Chem model is a useful tool for studying the high variability of O3 concentrations in Shanghai, which has important implication for the prediction of high O3 concentration events in the city.  相似文献   

14.
The mean monthly distribution of the diurnal maximum O3 and of the SO2 in the eastern two-thirds of the U.S. was determined for the summer (July and August) of 1977–1981. Highest O3 concentrations varied from 60 to 90 ppbv and covered an area of about 2 to 5 × 106 km2; and that for SO2 varied from values greater than 10 ppbv to values about 25 ppbv and covered an area of 0.3–1.3 × 106 km2. The geographical locations of the centers of high O3 concentrations were related to the path of the anticyclones. The centers of high SO2 concentration were affected by the path of anticyclones but to a lesser extent. The SO2 distribution was controlled to a significant extent by the location of major SO2 sources. The data suggested that highpressure systems that become stationary, weaken and dissipate in the eastern two-thirds of the U.S. have a profound effect on the O3 and SO2 distribution.  相似文献   

15.
This study develops fine temporal (seasonal, day-of-week, diurnal) and vertical allocations of anthropogenic emissions for the TRACE-P inventory and evaluates their impacts on the East Asian air quality prediction using WRF-Chem simulations in July 2001 at 30-km grid spacing against available surface measurements from EANET and NEMCC. For NO2 and SO2, the diurnal and vertical redistributions of emissions play essential roles, while the day-of-week variation is less important. When all incorporated, WRF-Chem best simulates observations of surface NO2 and SO2 concentrations, while using the default emissions produces the worst result. The sensitivity is especially large over major cities and industrial areas, where surface NO2 and SO2 concentrations are reduced by respectively 3–7 and 6–12 ppbv when using the scaled emissions. The incorporation of all the three redistributions of emissions simulates surface O3 concentrations higher by 4–8 ppbv at night and 2–4 ppbv in daytime over broad areas of northern, eastern and central China. To this sensitivity, the diurnal redistribution contributes more than the other two.  相似文献   

16.
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (∼ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.  相似文献   

17.
Measurements of hydrogen peroxide (H2O2) and several meteorological and chemical parameters were made for 34 rain events which occurred in Miami, Florida between April, 1995 and October, 1996. The measured H2O2 concentrations ranged from 0.3 to 38.6 μM with an average concentration of 6.9 μM. A strong seasonal dependence for H2O2 concentrations was observed during this period, with highest concentrations in the summer and lower levels in the winter, which corresponds to the stronger solar radiation and higher vaporization of volatile organic compounds (VOCs) in the summer and fall, and the weaker sunlight and lower vaporization in the winter and spring. Measurements also showed a significant increase trend of H2O2 with increasing ambient rainwater temperature. Rains that were out from lower latitude were exposed to higher solar irradiation and contained relatively higher levels of H2O2 than those from the north. All these observations indicate that photochemical reactions that involved volatile organic compounds are the predominant source of H2O2 observed in rainwater. During several individual rainstorms, H2O2 concentration was found to increase as a function of time due to electrical storm activities. This finding suggests that lightning could be an important factor that determines the level of H2O2 during thunderstorms. Statistical data showed that the highest concentrations of H2O2 were observed only in rains containing low levels of nonsea-salt sulfate (NSS), nitrate and hydrogen ion. H2O2 concentrations in continental originated rains were much lower than marine originated ones, indicating that air pollutants in continental rains could significantly deplete the H2O2 concentration in atmospheric gas-phase, clouds and rainwater.  相似文献   

18.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

19.
Impact of the excited nitrogen dioxide (NO21) chemistry on air quality in the U.S. is examined using the Community Multiscale Air Quality (CMAQ) model for a summer month. Model simulations were conducted with and without the NO21 chemistry. The largest impact of the NO21 chemistry in the eastern U.S. occurred in the northeast and in the western U.S. occurred in Los Angeles. While the single largest daily maximum 8-h ozone (O3) increased by 9 ppbv in eastern U.S. and 6 ppbv in western U.S., increases on most days were much lower. No appreciable change in model performance statistics for surface-level O3 predictions relative to measurements is noted between simulations with and without the NO21 chemistry. Based on model calculations using current estimates of tropospheric emission burden, the NO21 chemistry can increase the monthly mean daytime hydroxyl radicals (OH) and nitrous acid (HONO) by a maximum of 28% and 100 pptv, respectively.  相似文献   

20.
Abstract

Attaining the National Ambient Air Quality Standard (NAAQS) for ozone (O3) could cost billions of dollars nationwide. Attainment of the NAAQS is judged on O3 measurements made by the Federal Reference Method (FRM), ethylene chemiluminescence, or a Federal Equivalent Method (FEM), predominantly ultraviolet (UV) absorption. Starting in the 1980s, FRM monitors were replaced by FEMs so that today virtually all monitoring in the United States uses the UV methodology. This report summarizes a laboratory and collocated ambient air monitoring study of interferences in O3 monitors. Potential interferences examined in the laboratory included water vapor, mercury, o-nitrophenol, naphthalene, p-tolualdehyde, and mixed reaction products from smog chamber simulations of urban atmospheric photochemistry. UV absorption O3 monitors modi?ed for humidity equilibration were also collocated with UV FEM O3 monitors at six sites in Houston, TX, during the 2007 summer O3 season. The results suggest that humidity and interfering species can positively bias (overestimate) O3 measured by FEM monitors used to determine compliance with the O3 standards. The results also suggest that humidity equilibration can mitigate this bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号