首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precipitation scavenging of particles is a major mechanism for atmospheric deposition of organic contaminants, but there have been few field studies. We studied precipitation scavenging of PCDD/Fs with the aim of deepening understanding of environmental variables influencing this process. Bulk deposition of PCDD/Fs and their concentrations in ambient air measured at a background site in Sweden were used to calculate precipitation scavenging ratios. Contrary to expectations, increasing scavenging ratios with decreasing degree of chlorination of the PCDD/F congeners were observed when the particle-associated PCDD/F concentrations in air were used for the calculation. This was attributed to differences in temperature and thereby in the gas – particle partitioning of the PCDD/Fs between ground level and clouds where much of the particle scavenging occurs. When the particle-associated PCDD/F concentrations were recalculated for a 10–20 °C lower temperature, the scavenging ratios of the different PCDD/F congeners were similar. Hence differences between ground level and in-cloud temperature should be considered when calculating scavenging ratios from field observations and when modeling this process. The scavenging ratios averaged ~200 000, with lower values when the particle-associated PCDD/F concentration in air was lower. The soot concentration in air was a good predictor of bulk deposition of PCDD/Fs.  相似文献   

2.
Ambient air samples from a traffic intersection, an urban site and a petrochemical-industrial site (PCI) were collected by using several dry deposition plates, two Microorifice uniform deposited impactors (MOUDIs), one Noll Rotary Impactor (NRI) and several PS-1 (General Metal Work) samplers from March 1994 to June 1995 in southern Taiwan, to characterize the atmospheric particle-bound PAH content of these three areas. Twenty-one individual polycyclic aromatic hydrocarbons (PAHs) were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). In general, the sub-micron particles have a higher PAH content. This is due to the fact that soot from combustion sources consists primarily of fine particles and has a high PAH content. In addition, a smaller particle has a higher specific surface area and therefore may contain more organic carbon, which allows for more PAH adsorption. For a particle size range between 0.31 and 3.2 microm, both Urban/Traffic and PCI/Traffic ratios of particle-bound total-PAH content have the lowest values, ranging from 0.25 to 0.28 (mean = 0.26) and from 0.07 to 0.13 (mean = 0.10), respectively. This indicates that, during the accumulation process, the PAH mass shifted from a particle phase to a gas phase, or the particles aggregated with lower PAH-content particles, resulting in a reduction in particle-bound PAH content. By using the particle size distribution data, the dry deposition model in this study can provide a good prediction for the PAH content of dry deposition materials. In general, lower molecular weight PAHs had a larger fraction of dry deposition flux contributed by the gas phase; for 2-ring PAH (50.4, 46.3 and 28.4%), 3-ring PAHs (15.2, 15.4 and 11.7%) and 4-ring PAHs (13.0, 3.60 and 5.01%) for the traffic intersection, urban and PCI sites, respectively. For higher molecular weight PAHs-5-ring, 6-ring and 7-ring PAHs-their cumulation fraction (F%) of dry deposition flux contributed by the gas phase was lower than 3.26%. At the traffic intersection, urban and PCI sites, the mass median diameter of dry deposition materials (MMD(F)) of individual PAHs was between 25.3 and 49.6 microm, between 27.6 and 43.9 microm, and between 19.1 and 41.9 microm, respectively. This is due to the fact that PAH dry-deposition primarily resulted from gravitational settling of the coarse particulates (> 10 microm).  相似文献   

3.
Persistent organic pollutants (POPs) such as PAHs are subject to long-range atmospheric transport, which can result in the contamination of remote areas such as the Arctic. A simple model was developed to describe the removal processes of four PAHs; fluorene (FLU), phenanthrene (PHEN), fluoranthene (FLA) and benzo[a]pyrene (B[a]P) transported over a 5 day period from a source area over the UK to the Russian Arctic. The purpose of this model was to study processes affecting the PAHs within the atmosphere, rather than their interaction with the earth's surface. The components to the model included gas/particle partitioning, reaction with OH radicals and dry and wet deposition (both rain and snow). Atmospheric/meteorological parameters for the geographical region of interest were generated from three-dimensional atmospheric models. Air concentrations were prescribed in the source area with no additional PAH inputs along the transect, both winter and summer scenarios were modelled. Reaction with OH was a major removal mechanism for gas-phase FLU, PHEN and FLA, most notably in the temperate atmosphere. Wet deposition in the form of snow accounted for the majority of PAH loss in the winter, although the gas and particle scavenging ratios used in this model ranged over several orders of magnitude. Using a 5 day transport scenario in a `1-hop’ event, the model predicted that a primary emission of FLA and B[a]P to the atmosphere of the southern UK, would not reach the Russian Arctic at a distance of ∼3500 km, assuming a constant windspeed of 10 m s−1. However, both FLU and PHEN with calculated half-lives of >60 h during the winter could be transported to this area under this scenario.  相似文献   

4.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAH) were measured in air samples at a remote air monitoring site established in the Yukon Territory, Canada as part of a global project (International Polar Year; IPY) to study the potential for atmospheric long-range transport of anthropogenic pollutants to the Arctic. Gas- and particle-phase PAH were collected in polyurethane foam plugs and on glass fibre filters respectively from August 2007 to October 2009. PAH concentrations were found to be highest in the winter months and lowest in summer. The gas/particle partitioning coefficients of 3–5 ringed PAH were computed and seasonal averages were compared. In the summer time, lower molecular mass PAH exhibited relatively higher partitioning into the particle-phase. This particle-phase partitioning led to the shallowest slopes being recorded during summer for the log–log correlation plots between the PAH partition coefficients and their sub-cooled vapour pressures. Air mass back trajectories suggest that local impacts may be more important during the summer time which is marked by increased camping activities at camping sites in the proximity of the sampling station. In conclusion, both summer and wintertime variations in PAH concentrations and gas/particle partitioning are considered to be source- and phototransformation-dependent rather than dependent on temperature-driven shifts in equilibrium partitioning.  相似文献   

6.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

7.
A method of analyzing spatial flow and precipitation patterns associated with long-range transport is presented. This technique uses hourly precipitation data and model-calculated mixed layer trajectories to determine these patterns upwind of a receptor site. Precipitation is determined at hourly points along trajectories in a statistical sense using estimates of error in long-range trajectory calculations. This technique is used in seasonal analyses of fine particle concentrations at a remote northern Great Plains sampling site during summer 1980. The analyses show that there are distinctly different flow and precipitation patterns during high and low fine particle concentration periods. Highest fine sulfur particle concentrations occurred when flow was from the south with a higher frequency of precipitation. Highest fine soil particle concentrations occurred when precipitation frequencies were lower.  相似文献   

8.
Urban aerosol was collected in a summer and a winter campaign for 7 and 3 days, respectively. Low volume samples were taken with a time resolution of 160 min using a filter/sorption cartridge system extended by an ozone scrubber. Concentrations of mainly particle associated polycyclic aromatic hydrocarbons (PAH) and oxidised PAH (O-PAH) were determined by gas chromatography/high resolution mass spectrometry. The sampling site was located in the city centre of Augsburg, Germany, near major roads with high traffic volume. The daily concentrations and profiles were mainly governed by local emissions from traffic and domestic heating, as well as by the meteorological conditions. During the winter campaign, concentrations were more than 10 fold higher than during the summer campaign. Highest concentrations were found concurrent with low boundary layer heights and low wind speeds. Significant diurnal variation of the PAH profiles was observed. Enhanced influences of traffic related PAH on the PAH profiles were evident during daytime in summer, whereas emissions from hot water generation and domestic heating were obvious during the night time of both seasons. A general idea about the global meteorological situation was acquired using back trajectory calculations (NOAA ARL HYSPLIT4). Due to high local emissions in combination with low air exchange during the two sampling campaigns, effects of mesoscale transport were not clearly observable.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the Baltimore and adjacent Chesapeake Bay in July 1997. Time series of 4- and 12-h samples were taken at two sites 15 km apart in order to evaluate the influence of a number of processes on the short-term variability of PAH in the Baltimore and northern Chesapeake Bay atmospheres. PAH concentrations were 2–3-fold higher in the Baltimore atmosphere than in the adjacent Chesapeake Bay atmosphere. For example, gas-phase phenanthrene and pyrene concentrations were 12.5 and 2.14 ng m−3 in the Baltimore site and 5.57 and 0.548 ng m−3 in the Chesapeake Bay, respectively. The influence of wind direction, wind speed and temperature was evaluated by multiple linear regressions which indicated that atmospheric gas-phase PAH concentrations over the Chesapeake Bay were significantly higher when the air mass was from the urban/industrial Baltimore area. Furthermore, the increase of gas-phase low-MW PAH concentrations with temperature and wind speed suggests that volatilization from the bay is an important source of pollutants to the atmosphere, at least when air masses are not influenced by the Baltimore urban and industrial area. Indeed, while on the long-term, the Chesapeake Bay is a receptor of atmospherically deposited PAHs, on the short-term and during appropriate meteorological conditions, the bay acts as a source of pollutants to the atmosphere. Aerosol-phase PAH concentrations and temporal trends showed a strong dependence on aerosol soot content due to the high affinity of PAHs to the graphitic structure of soot. These results confirm the important influence of urban areas as a source of pollution to adjacent aquatic environments and as a driving factor of the short-term variability, either directly by transport of urban-generated pollutants or by volatilization of previously deposited pollutants. Conversely, the complex diurnal trends of gas-phase PAHs at the Baltimore site suggests that degradation processes dominate the diurnal trends of PAHs in urban atmospheres. This conclusion is supported by estimated rate constants for PAH reaction with OH radicals which show good agreement with reported values within a factor of two.  相似文献   

10.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

11.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

12.
Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and concentrations of ultrafine particles (UFPs, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006–20 μm using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.  相似文献   

13.
Concentrations of ions in storm rainwater in Texas have been monitored for each 0.254 mm increment of precipitation. The changes in concentrations have been analyzed to investigate the role of differential rates of scavenging of particulate matter of differing particle size, and especially the major acid and base components. The empirical trend at the onset of rainfall is a chemical fractionation of acids and bases with correspondingly wide pH variations. These results are confirmed by model calculations, which show a significant preferential scavenging of calcium relative to sulfate in the first 10 mm of rainfall, resulting in fractionation of bases and acids from their atmospheric concentrations. Previous studies, using Target Transformation Factor Analysis of ion concentrations in storm precipitation and regional ambient aerosol data, statistically determined the average source for acidic secondary species and alkaline particulate matter. Two types of crustal sources were identified as western and eastern soil dust. In this study, an alternate physical explanation for these two soil dust factors is offered. As a storm progresses, the elements in the local soil dust are fractionated as a result of their differential rates of precipitation scavenging, enriching species predominantly in the fine particle size and depleting elements predominantly in the coarse particle size. This fractionation process results in a single source having different elemental ratios at the beginning and at the end of a rain event. For Austin, Dallas, and Tyler, Texas, the soil dust previously identified as being from eastern sources could, instead, be a fractionated form of the western soil source.  相似文献   

14.
An intensive sampling campaign was undertaken in the surroundings of a municipal waste incinerator located in a French great urban centre in order to evaluate the impact of particles emissions on the ambient air and to estimate the exposure levels to toxic or carcinogenic compounds for a population living in the neighbourhood of this incinerator. To minimise the effect of industrial and road activities, sampling was performed during the 2 days of a weekend and on Monday morning. Different operating modes of the incinerator were investigated: (i) normal incinerator functioning and (ii) maintenance activity of the combustion chamber corresponding to the stop and cooling furnace periods. Particulate polycyclic aromatic hydrocarbons (PAHs) and total particulate carbon concentrations were determined in three sites situated, respectively, close to the incinerator, 2 km downwind and 1 km upwind of the plant. In normal operating mode similar concentrations were observed in the three sites. During the furnace stop an increase of total PAH concentrations was observed in the sampling site close to the incinerator. The concentration was 3 times higher than those measured in the other two sampling sites. But this increase was limited in time and in space since this phenomenon is only observed in the vicinity of the incinerator. The study of PAH profiles indicated that Pyrene and Retene showed the highest enhancement of their relative concentrations. The influence of incinerator functioning parameters on the PAHs concentrations is discussed. The furnace temperature and the mode of exhaust fumes seem to be deciding parameters to explain the increase of PAH level in the incinerator site. However, the incinerator emissions remained a minor part of the atmospheric pollution in the urban area.  相似文献   

15.
Mercury wet deposition is dependent on both the scavenging of divalent reactive gaseous mercury (RGM) and atmospheric particulate mercury (Hg(p)) by precipitation. Estimating the contribution of precipitation scavenging of RGM and Hg(p) is important for better understanding the causes of the regional and seasonal variations in mercury wet deposition. In this study, the contribution of Hg(p) scavenging was estimated on the basis of the scavenging ratios of other trace elements (i.e., Cd, Cu, Mn, Ni, Pb and V) existing entirely in particulate form. Their wet deposition fluxes and concentrations in air, which were measured concurrently from April 2004 to March 2005 at 10 sites in Japan, were used in this estimation. The monthly wet deposition flux of mercury at each site correlated with the amount of monthly precipitation, whereas the Hg(p) concentrations in air tended to decrease during summer. There was a significant correlation (P<0.001) among the calculated monthly average scavenging ratios of trace elements, and the values in each month at each site were similar. Therefore, it is assumed the monthly scavenging ratio of Hg(p) is equivalent to the mean value of other trace elements. Using this scavenging ratio (W), the wet deposition flux (F) due to Hg(p) scavenging in each month was calculated by F=WKP, where K and P are the Hg(p) concentration and amount of precipitation, respectively. Relatively large fluxes due to Hg(p) scavenging were observed at a highly industrial site and at sites on the Japan Sea coast, which are strongly affected by the local sources and the long-range transport from the Asian continent, respectively. However, on average, at the 10 sites, the contribution of Hg(p) scavenging to the annual mercury deposition flux was 26%, suggesting that mercury wet deposition in Japan is dominated by RGM scavenging. This RGM should originate mainly from the in situ oxidation of Hg0 in the atmosphere.  相似文献   

16.
Air samples were collected using active samplers at various heights of 8, 15, 32, 47, 65, 80, 102, 120, 140, 160, 180, 200, 240, 280 and 320 m on a meteorological tower in an urban area of Beijing in two campaigns in winter 2006. Altitudinal distributions of polycyclic aromatic hydrocarbons (PAHs) in atmospheric boundary layer of Beijing in winter season were investigated. Meteorological conditions during the studied period were characterized by online measurements of four meteorological parameters as well as trajectory calculation. The mean total concentrations of 15 PAHs except naphthalene of gaseous and particulate phase were 667±450 and 331±144 ng m−3 in January and 61±19 and 29±6 ng m−3 in March, respectively. Domestic coal combustion and vehicle emission were the dominant PAH sources in winter. Although the composition profiles derived from the two campaigns were similar, the concentrations were different by one order of magnitude. The higher concentrations in January were partly caused by higher emission due to colder weather than March. Moreover, weak wind, passing through the city center before the sampling site, picked up more contaminants on the way and provided unfavorable dispersion condition in January. For both campaigns, PAH concentrations decreased with heights because of ground-level emission and unfavorable dispersion conditions in winter. The concentration ratio of PAHs in gas versus solid phases was temperature dependent and negatively correlated to their octanol–air partition coefficients.  相似文献   

17.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at six sampling sites in the heating (February to March 2001) and nonheating (August to September 2001) periods in an industrial city in Northern China. Thirteen PAHs were measured. The total average concentrations (nanograms per meter cubed) of PAHs ranged between 78.93 and 214.63 during the heating period and from 31.48 to 102.26 in the nonheating period. Benzo(a)pyrene occurred at the highest level at a site near an industrial area but occurred at low concentrations far from the city center and industrial areas. In addition, ambient PAH profiles were studied. The five and six-ring species occurred in high fractions at the sampling site. By diagnostic ratio analysis, the major source at each sampling site in the city was coal combustion in the heating period; in the nonheating period, the major sources were relatively complex. Finally, the similarities among the six regions were assessed by principal component analysis, cluster analysis, and coefficient of divergence. These multivariate statistical analyses produced similar results, which agreed with the results from the diagnostic ratio analysis.  相似文献   

18.
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.  相似文献   

19.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

20.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号