首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional-scale transport, chemistry and deposition of acidifying compounds, photochemical oxidants, and their precursors are analyzed using a second-generation Eulerian model. The important atmospheric processes are incorporated using chemical, dynamical and thermodynamical parameterizations having sufficient detail to accommodate boundary layer-free troposphere exchange in cloudy and cloud-free environments, and in-cloud and below-cloud wet removal and chemistry. Forty-one species are considered, many of which are also present in the liquid-drop phases. In the regional scale transport, the advected species are NO, NO2, SO2, SO−24, O3, HNO3, NH3, PAN, H2O2, HCHO, alkanes, C2H4, other olefins, aromatics, RCHO, ROOH, HNO2, RONO2 and RO2NO2. The model capabilities are illustrated by showing simulations in which non-precipitating clouds are present to absorb gas-phase species, chemically alter these, and then release them to the atmosphere.  相似文献   

2.
The high density network component of the Oxidation and Scavenging Characteristics of April Rains (OSCAR) experiment combined aircraft, surface and sequential precipitation chemistry measurements to characterize the physicochemical and dynamic features of four storms sampled during an April 1981 field investigation. A surface network of 47 precipitation sampling stations, covering a region roughly 110 km by 110 km, was established in the area surrounding Fort Wayne, Indiana. The network provided temporal and spatial resolution of rainfall chemistry via the use of specially designed automatic sequential bulk precipitation collectors, while aircraft and surface sampling provided measurements of the major aerosols and trace gases in the boundary-layer inflow region.Composite concentration and ion ratio profiles for the events were analyzed to investigate potential pollutant scavenging pathways. This analysis led to the following observations:
  • 1.(i) dryfall deposition during pre-rainfall exposure periods influenced initial sampler stage chemistry;
  • 2.(ii) relative precipitation acidity increased throughout the events; SO42− and NO3 were the major contributors to this acidity;
  • 3.(iii) evidence exists for the in-cloud oxidation of SO2 during Events 3 and 4, while scavenging of HNO3 and aerosol NO3 probably produced precipitation NO3;
  • 4.(iv) the non-frontal meteorology of Event 3 influenced the precipitation chemistry associated with this storm and led to distinct concentration profiles;
  • 5.(v) an anomalous pattern of NH4+ concentrations observed during Event 1 cannot be explained by known NH4+ scavenging behavior or by non-scavenging related influences, such as local source contamination or NH3 volatilization;
  • 6.(vi) Event 4 is more suitable for analysis by one- and two-dimensional diagnostic wet removal models. Analysis of the other events is complicated by more complex meteorological behavior and, in some cases, a less complete chemistry data set. This paper enlarges on these observations with comparisons of the major meteorological and chemical characteristics of the four events.
  相似文献   

3.
The sensitivity of in-cloud oxidation of SO2 in corrective clouds to a number of chemical and physical parameters is examined. The parameterization of precipitation growth processes is based on the work of Scott (1978) and Hegg (1983). A chemical model predicts gas and aqueous phase distributions of soluble gases and in-cloud uncatalyzed oxidation of SO2 by O3 and H2O2. Sulfate aerosol and SO2, CO2, NH3, H2O2 and O3 gases and their aqueous phase dissociation products are treated.The results indicate that in-cloud conversion is an important removal mechanism for SO2 and accounts for a significant fraction of the precipitation sulfate. However, except at low SO2 concentrations, the precipitation sulfate concentration is insensitive to the initial SO2 concentration; the sulfate concentration is most sensitive to the initial H2O2 and NH3 concentrations. At low SO2 concentrations, the precipitation sulfate concentration is determined primarily by the initial sulfate aerosol concentration. The feedback between sulfate production and pH is important in limiting SO2 oxidation by O3. If gas phase H2O2 of order 1 ppb is the major source of aqueous phase H2O2 for S(IV) oxidation, it is likely that the oxidation reaction is oxidant limited. The sulfate concentration is a decreasing function of the precipitation rate. At low rainfall rates (< 1 mm h−1), ice phase growth decreases the sulfate concentration. However, the results are insensitive to an ice phase origin at moderate and high rainfall rates.  相似文献   

4.
The atmospheric chemical process was simulated using the Carbon Bond 4 (CB-4) model, the aqueous-phase chemistry in Regional Acid Deposition Model and the thermodynamic equilibrium relation of aerosols with the emission inventories of the Emission Database for Global Atmospheric Research, the database of China and South Korea and the Mesoscale Model version 2 (MM5) meteorological fields to examine the spatial distributions of the acidic pollutant concentrations in East Asia for the case of the long-lasting Yellow Sand event in April 1998. The present models simulate quite well the observed general trend and the diurnal variation of concentrations of gaseous pollutants, especially for O3 concentration. However, the model underestimates SO2 and NOx concentration but overestimates O3 concentration largely due to uncertainty in NOx and VOC emissions. It is found that the simulated gaseous pollutants such as SO2, NOx, and NH3 are not transported far away from the source regions but show significant diurnal variations of their concentrations. However, the daily variations of the concentrations are not significant due to invariant emission rates. On the other hand, concentrations of the transformed pollutants including SO42−, NH4+, and NO3 are found to have significant daily variations but little diurnal variations. The model-estimated deposition indicates that dry deposition is largely contributed by gaseous pollutants while wet deposition of pollutants is mainly contributed by the transformed pollutants.  相似文献   

5.
A series of experiments using bulk precipitation collectors of the type used in the UK precipitation chemistry network measured the amounts of NH4+, SO42− and other ions that could be washed from funnels (diameter 15 cm) exposed to a wide range of NH3 and SO2 concentrations over periods from hours to days. In dry conditions, the average deposition flux of NH3 was between 50 and 120 nmol NH4+ funnel−1 d−1 (0.1–0.3 kg N ha−1 yr−1), and was independent of the concentration of NH3. Dry deposition of NH3 to wet funnels at small NH3 concentrations was almost 5 times that to dry funnels under the same conditions (average 240 nmol funnel−1 d−1; 0.7 kg ha−1 yr−1), and increased with increasing NH3 concentrations. The amount of NH4+ ions remaining on the funnel surface was inversely proportional to the vapour pressure deficit during the experiment. This result was interpreted as a dependence on the duration of surface wetness, with greater deposition of NH4+ when evaporation rates of surface water were small.The amount of SO2 deposited on funnel surfaces was closely related to the amount of NH3 deposited, in both wet and dry conditions, but was not strongly correlated with the SO2 concentration. At low NH3 and SO2 concentrations the average deposition to dry funnels was 70 nmol SO42− funnel−1 d−1 (0.5 kg ha−1 yr−1), and to wet funnels was approximately 2.5 times larger. The results are interpreted in terms of the balance between the rate of evaporation of surface water, and the rate of oxidation of SO2, which leads to the ‘fixing’ of NH4+ ions on the surface as involatile salts.It is predicted that dry deposition of NH3 to funnel surfaces across the UK Secondary Network could account for as much as one-half of the measured bulk wet deposition at sites where wet deposition of NH4–N is small. The amount of dry deposition depends on how long and how often funnel surfaces are wetted by rain or dew, and on the air concentrations of NH3. These predictions are based on funnels being wetted only once per day. More frequent wetting would increase the contribution from dry deposition, and the consequent overestimate of wet deposition of NH4–N across the UK by using data obtained from bulk collectors. To some extent this overestimate may be offset by microbial degradation and loss of NH4–N in weekly bulk precipitation samples during collection and storage.  相似文献   

6.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

7.
Atmospheric deposition is an important removal process of aerosol particles and gases from the atmosphere. To elucidate the relative contributions of wet and dry processes and in-cloud and below-cloud scavenging based on deposition amounts in winter at Mt. Tateyama, central Japan, we obtained daily samples (December, 2006–March, 2007) of size-segregated aerosol particles and precipitation at Senjyugahara (SJ; 475 m a.s.l.) and vertical samples of spring snow cover at Murododaira (MR, 2450 m a.s.l., 13 km distance from SJ) on the western flank of Mt. Tateyama. The NH4+ and nssSO42? in aerosols were mostly found in the fine fraction (<2 μm), although Na+, NO3?, and nssCa2+ were mainly detected in the coarse fraction (>2 μm). Average ionic concentrations (μg g?1) in precipitation at SJ were higher about 3.8 for Na+ and nssCa2+, 3.4 for NO3?, 3.7 for NH4+, 2.5 for nssSO42? than those at MR, whereas cumulative precipitation amounts at SJ and MR were, respectively, 84 and 175 cm of water equivalent. Wet and dry deposition amounts during the study period were estimated for sites using size-segregated aerosol data, winter averages of HNO3, NH3, and SO2 concentrations, and dry deposition velocities. Particle-dry deposition comprised about 3% (Na+) to 11% (NH4+) of the total deposition at MR. The maximum amounts of gas dry deposition were estimated, respectively, as 4, 13, and 3% of the total deposition at MR for NH4+, NO3?, and nssSO42?. The relative contributions of below-cloud scavenging (BCS) between MR and SJ were estimated as considering the wet only deposition amount at MR. Higher contributions of BCS were obtained for Na+ (56%) and nssCa2+ (45%), whereas BCSs for NH4+, NO3?, and nssSO42? were lower than 28%. Ionic constituents existing predominantly in the coarse fraction showed a large contribution of BCS.  相似文献   

8.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

9.
Measurements are reported of the chemical composition of the liquid water and interstitial air in warm (> 0°C), non-precipitating stratus and strato-cumulus clouds at various locations in the eastern United States. Inorganic ionic composition of the cloud water was generally dominated by H+, NH4+, NO3 and SO42−, similar to the composition of precipitation in this region of the U.S. Concentrations of the corresponding interstitial aerosol species and gaseous HNO3 were invariably low in comparison to concentrations of the respective ionic species in cloudwater. In contrast, the concentration of NOx (i.e. NO + NO2 + organic nitrates) was invariably comparable to or in excess of that of cloudwater nitrate. Sulfur dioxide was found at varying concentrations relative to cloudwater sulfate. In many cases, the SO2 concentration was quite low (< 0.2 ppb) even in the presence of substantial quantities of cloudwater SO42− (> 1 ppb equivalent gas-phase concentration), suggesting large fractional conversion and incorporation into cloudwater. In other cases, in which dilute SO2 plumes (pso, > 5 ppb) were observed in the cloud interstitial air, the gaseous SO2 concentration substantially exceeded the cloudwater sulfate concentration.Concentrations of H2O2 in cloudwater were found to exhibit strong inverse correlation with interstitial SO2. Appreciable concentrations of SO2 in cloud interstitial air and H2O2 in cloudwater were only rarely observed to coexist, for the most part only one or the other being present above the limit of detection. These observations are consistent with aqueous-phase oxidation of SO2 by H2O2, as has been inferred previously on the basis of laboratory kinetic studies, and with the hypothesis that depending on relative concentrations, either of these species can be a limiting reagent for in-cloud SO2 oxidation. The uptake of NOx as cloudwater nitrate is less complete than the uptake of SO2 as sulfate, and evidence for the occurrence of similar in-cloud processes causing the conversion of NO or NO2 to cloudwater nitrate has not been found.  相似文献   

10.
Numerical simulations have been carried out with a model consisting of clear-air chemistry, in- cloud chemical reactions, and dynamic processes of cloud development in order to examine the time history of cloudwater pH and sulfate production in a cumulus cloud and the relationship between pollutant precursors and corresponding acidic chemical species in wet deposition. Preliminary results indicate that the molar ratio SO42−/NC3 in cloud water increases as the ratio SO2/NO2 increases, that the relationship between the increase of precursor SO2/NO2 and the increase of SO42−/NO3 in cloud water is nonlinear, and that the degree of this nonlinearity becomes more significant for cases when the cloud condensation nuclei content in air is assumed to be invariant.  相似文献   

11.
Wet and dry deposition as collected by a bucket were measured at two sites in southeastern Michigan for two years. The precipitation had an average pH of 4.27 and a SO2−4 to NO3 ratio of 2.0. Particulate dry deposition velocities of 0.6 cm s−1 for SO2−4 and NO3 and > 2 cm s−1 for Cl, Ca2+, Mg2+,Na+ and K+ were calculated. The ambient particle composition, dry bucket collection and wet deposition were compared at two sites, one urban and the other rural. Higher ambient particle concentrations and dry deposition rates were measured at the urban site than the rural site, indicating the influence of local emissions. However, local emissions had no effect on the wet deposition concentrations. The influence of more distant source regions was examined by separating the precipitation events by wind direction. The events from the south and east had the highest SO2−4 to NO3 ratios, which corresponded to the areas with the highest sulfur emissions. NO3 showed no directional dependence.Wet deposition was examined for the effect of storm type and seasonal trends. Contrary to a recent study on Long Island, we found higher concentrations of H+, SO2−4 and NH+4 in winter rain compared to snow. The wet deposition concentrations of H+, SO2−4, and NH+4 were highest in the summer, while only Na+ and Cl concentrations were highest in the winter, presumably due to winter road salting. The total deposition of acidic ions was highest in the summer and lowest in the winter, due both to lower concentrations and lower precipitation volumes in the winter. The dry deposition as collected by a bucket accounted for 1 % of total H+ deposition, 21 % of SO2−4 deposition, 27% of NO3 deposition, 50% of Cl deposition and 61 % of Ca2+ deposition.  相似文献   

12.
Concentrations of major ions, SO42−, NO3, Cl, H+, Ca2+, K+, Mg2+, Ca2+ and conductivity were measured in approximately 300 daily, wet-only rain samples collected at a permanent rural station between 1993 and 1998. Concentrations of anthropogenic ions NH4+, SO42− and NO3 were among the highest values reported in whole EMEP network, suggesting that the Anatolian plateau is under strong influence of distant emission sources. Although transport of pollutants have significant influence on the chemical composition of precipitation, average pH of the rainwater is 6.2 due to extensive neutralization of acidity. Approximately 95% of the acidity in collected samples is neutralized, particularly in summer season. The neutralizing agents are primarily CaCO3 and NH3. Concentrations of crustal ions are higher in summer season due to enhanced resuspension of soil particles from dry surface soil. Concentrations of anthropogenic ions SO42− and NO3 do not change significantly between summer and winter due to higher intensity of rains in summer season. Although concentrations of ions measured in this study is among the highest reported in EMEP network, wet deposition fluxes are low compared to flux values reported for similar sites in Europe, due to low annual precipitation in the Anatolia. Wet deposition fluxes of all measured parameters are highly episodic. Source regions affecting chemical composition precipitation in the Central Anatolia is investigated using trajectory statistics.  相似文献   

13.
The coefficients for the wet removal of HNO3 vapor from the atmosphere by rain (in-cloud and below-cloud) and snow have been derived under a number of approximations. The wet removal coefficients are parametrized in terms of precipitation rate. These coefficients are intended to represent the average scavenging from large precipitation bands or frontal systems where there is widespread weakly ascending air motion. Consequently, the derived coefficients would be appropriate, on an interim basis, for inclusion into regional or mesoscale models which include the wet removal of HNO3 vapor. These coefficients, when combined with altitude-dependent precipitation rates and vertical profiles of HNO3 concentrations, are also useful to estimate the flux of HNO3 to the earth's surface. The derived snow scavenging coefficients are consistent with those of recent measurements by Huebert et al. Both rain and snow scavenging coefficients are also consistent with recent observations of ionic composition in winter precipitation samples which indicated that snow removes HNO3 vapor more efficiently than rain.  相似文献   

14.
A mesoscale model of pollutant transport, transformation and deposition was used to perform a detailed analysis of acidic deposition to the states of New York and Ohio during a 3-day springtime deposition episode. This model can be used to assess the roles of wet and dry deposition to individual land types in the removal of pollutants from the atmosphere. Over two-thirds (67 %, Ohio; 78 %, New York) of the acidic deposition during this rainy period fell as wet deposition, primarily in the form of H2SO4. Dry deposition of SO2 accounted for 70–75 % of the total dry acidic deposition in both areas, and most of the remaining dry deposition occurred as HNO3. Over both deposition areas, particulate sulfate deposition accounted for <1 % of the total acid deposition. Due to the highly surface-specific nature of the dry deposition process, individual land types displayed unique patterns of pollutant uptake. Water surfaces absorbed primarily SO2, while rougher forested areas absorbed a larger proportion of HNO3 vapor. Urban areas, with their associated material surfaces, were found to absorb significantly less acid in the dry form, and during dry periods most of this deposition may occur as HNO3 vapor, although considerable uncertainty exists regarding the treatment of rainfall-wetted surfaces. These model results suggest that dry pollutant fluxes to individual surface types will show significant variability from any ‘averaged’ flux estimates over larger areas encompassing numerous land types.  相似文献   

15.
Vertical concentration profiles for NH3, HNO3 and HCl-gas and for NH4+, NO3, SO2−4, Cl and Na+ aerosol were obtained from a meteorological tower in the central part of the Netherlands. An upward NH3 flux of 0.12 μgm−2 s−1 was calculated from the NH3 profiles and meteorological data. From the HNO3 profiles a maximum HNO3 dry deposition velocity of 4 cm s−1 was calculated. Good agreement was found between the measured concentration products [NH3](g) × [HNO3](g) and the theoretical values at temperatures above 0°C and relative humidities below 80%. In other cases, higher NH3 and/or HNO concentrations in the gas phase were measured than theoretically predicted.  相似文献   

16.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

17.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

18.
Numerical precipitation scavenging models are used to investigate the relationship between the inflow concentrations of sulfur species to precipitation systems and the resulting sulfur wet deposition. Simulations have been made for summer and winter seasons using concentration ranges of SO2, aerosol SO42−, H2O2 and O3 appropriate for the eastern U.S. summer simulations use one-dimensional timedependent convective cloud and scavenging models; winter simulations use two-dimensional steady-state warm-frontal models. Sulfur scavenging mechanisms include nucleation scavenging of aerosol, aqueous reactions of H2O2, O3 and HCHO with S(IV), and nonreactive S(IV) scavenging. Over the wide range of conditions that have been examined, the relation between sulfur inflow and sulfur wet deposition varies from nearly linear to strongly nonlinear. The degree of nonlinearity is most affected by aerosol SO42− levels and relative levels of SO2 vs H2O2. Higher aerosol SO42− levels (as found in summer) produce a more linear relation. The greatest nonlinearity occurs when SO2 exceeds H2O2. Winter simulations show more nonlinearity than summer simulations.  相似文献   

19.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

20.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号