首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为确定南昌市秋冬季降水中硝酸盐来源及贡献,于2016年9月1日至2017年2月28日对南昌地区雨水进行采集,分析了其化学组成及NO3-同位素组成并利用贝叶斯混合模型对NO3-四种潜在来源贡献进行计算.结果显示NO3-浓度范围为7.3~99.5μmol/L,平均值为36.1μmol/L;δ15N-NO3-变化范围为-6.0‰~+8.3‰,平均值为-0.8‰,两者均呈现冬季高秋季低的变化趋势.NO3-浓度季节性变化可能是受到降雨量等因素的影响,而δ15N-NO3-变化可能是冬季降水中机动车尾气排放偏高和秋季降水中煤燃烧来源偏高双重因素作用的结果.同位素及贝叶斯混合模型源解析结果表明,南昌市降水中NO3-主要来源于生物质燃烧(32.5%)、机动车尾气排放(30.8%)和煤燃烧(23.1%),三者贡献超过86%;而机动车尾气排放和生物质燃烧释放均超过30%,这可能与近年来机动车快速增加和秋冬季野外生物质大量燃烧有关.煤燃烧虽然也是重要来源,但相对生物质燃烧和机动车尾气排放较小,这可能与近年我国减排措施有关.  相似文献   

2.
杨笑影  曹芳  林煜棋  章炎麟 《环境科学》2020,41(6):2519-2527
连续收集2016年12月至2017年11月期间的南京降水样品,分析主要无机离子和有机酸的化学特征及季节变化,运用正交矩阵因子模型法(PMF)进行源解析.结果表明,南京地区降水pH均值为5.6,离子总浓度雨量加权平均值为297.3μmol·L~(-1),阳离子浓度依序为NH~+_4 Ca~(2+) K~+ Na~+ Mg~(2+),阴离子浓度则为NO~-_3 SO~(2-)_4 Cl~- F~-.总有机酸浓度雨量加权平均值为2.86μmol·L~(-1),占总阴离子的2.2%. CHO~-_2、C_2H_3O~-_2和C_2O~(2-)_4是南京降水主要的有机酸,年雨量加权平均值分别是1.35、 1.05和0.26μmol·L~(-1).离子浓度总体表现出明显的冬春高和夏秋低的季节性变化,而总有机酸浓度夏季最高,春季次之,冬季最低,生长季节高于非生长季节,与较多的植被排放有关.运用甲酸和乙酸的比值(F/A)判定南京降水有机酸的主要来源为植物生长释放,有机物燃烧,机动车排放等直接来源,大气氧化等间接来源较少.南京降水无机离子和有机酸主要有5个来源贡献,海源和二次无机生成、生物质燃烧、陆源和垃圾焚烧、二次有机生成、生物排放和生物源二次生成,分别贡献40.0%、 22.2%、 22.0%、 14.5%及1.3%.  相似文献   

3.
通过对重庆市黔江区"十二五"期间320个降水样品的pH值和化学组成成分等特征进行了研究,结果表明,五年间黔江区降水pH范围为4.71~7.81,电导率范围为21.8~42.5 μS/cm-1,平均值33.4 μS/cm-1.降水pH和电导率的Spearman秩相关系数法检验表明,pH的rs为正值,电导率的rs为负值,五年期间大气降水中总离子当量浓度有所下降,降水酸雨环境得到有效控制.SO2-4是降水中主要阴离子,占阴离子总量的74.3%,Ca2+是降水中主要阳离子,占阳离子总量的31.4%.黔江区酸雨为硫酸型或燃煤型酸雨,SO2-4/NO-3浓度比均值为7.13,SO2-4/NO-3比值在2013年达最大值,之后呈现减小趋势,黔江区汽车尾气和工业排放的NOx对降水的影响在变大.在99.0%的置信水平下,降水离子浓度总和与电导率线性相关显著.相关性研究表明:降水中SO2-4、NH+4、Ca2+、Mg2+、F-主要来自煤燃烧.Mg2+、Na+与Cl-即来源于地壳源又来自于海洋远源传输,人类活动对黔江区降水影响较大.  相似文献   

4.
在太原市7个点位采集采暖期PM10样品,用气相色谱-同位素质谱仪测定环境空气PM10和污染源(煤烟尘和机动车尾气)中9种多环芳烃(PAHs)的碳同位素组成(δ13C),并根据碳同位素质量平衡原理定量环境空气PAHs的源贡献率.结果表明:煤烟尘中PAHs随环数增加贫13C,机动车尾气中PAHs随环数增加富13C;各点位PAHs的δ13C值差别不大,变化趋势与煤烟尘基本一致,煤烟尘是城市PAHs的主要污染源;煤烟尘对各点位荧蒽和苯并[a]蒽的贡献率都大于机动车尾气,对 的贡献率与机动车尾气相当,煤烟尘是各点位荧蒽和苯并[a]蒽的主要来源, 是二者共同作用的结果;煤烟尘和机动车尾气对全市环境空气中荧蒽、苯并[ghi]荧蒽、苯并[a]蒽和苯并[b+k]荧蒽贡献率比都约为7:3,太原市环境空气PAHs污染属于煤烟尘和机动车尾气的复合污染.  相似文献   

5.
魏宸  黄虹  邹长伟  周熠 《环境科学研究》2016,29(11):1582-1589
为了解南昌新城区大气降水化学特性和来源,于2013年5月15日—2014年1月24日采集当地有效降水样品39个,分析其降水化学特性,包括pH、电导率和主要离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO3-和SO42-)的浓度.结果表明:南昌市新城区降水pH介于3.67~5.86之间,降水量加权平均值为4.63;电导率在6.13~73.01 μS/cm之间,降水量加权平均值为29.02 μS/cm;降水中总离子浓度为154.1~474.3 μeq/L,降水量加权平均值为300.1 μeq/L.SO42-、Ca2+、NH4+和NO3-是降水中的主要离子,合计占总离子浓度的82.6%.SO42-/NO3-(当量离子浓度比)在1.82~3.61之间,平均值为2.66.南昌市新城区降水相对酸度为0.43,57.0%的致酸物质被大气中碱性物质中和,主要的酸度中和因子为Ca2+和NH4+,分别贡献50.0%和36.6%的中和量.阴阳离子三角图分析表明,阴离子主要来自人为源;阳离子来源包括地壳源和人为源.富集系数分析表明,99.5%的Ca2+、88.4%的K+、63.0%的Mg2+来自地壳源;Mg2+、K+、Ca2+的海洋源输入分别为30.7%、4.6%和0.5%;1.2%的Cl-来自地壳源,55.8%来自海洋源,43.0%来自人为源;96.8%的SO42-和99.5%的NO3-来自人为源.研究显示,南昌市新城区的降水为混合型降水,人为源对大气环境产生了重要影响.   相似文献   

6.
在太原市7个点位采集采暖期PM10样品,用气相色谱-同位素质谱仪测定环境空气PM10和污染源(煤烟尘和机动车尾气)中9种多环芳烃(PAHs)的碳同位素组成(δ13C),并根据碳同位素质量平衡原理定量环境空气PAHs的源贡献率.结果表明:煤烟尘中PAHs随环数增加贫13C,机动车尾气中PAHs随环数增加富13C;各点位PAHs的δ13C值差别不大,变化趋势与煤烟尘基本一致,煤烟尘是城市PAHs的主要污染源;煤烟尘对各点位荧蒽和苯并[a]蒽的贡献率都大于机动车尾气,对的贡献率与机动车尾气相当,煤烟尘是各点位荧蒽和苯并[a]蒽的主要来源,是二者共同作用的结果;煤烟尘和机动车尾气对全市环境空气中荧蒽、苯并[ghi]荧蒽、苯并[a]蒽和苯并[b+k]荧蒽贡献率比都约为7:3,太原市环境空气PAHs污染属于煤烟尘和机动车尾气的复合污染.  相似文献   

7.
依据北京市环境保护监测中心1997~2011年降水监测资料、大气环境质量监测资料,结合北京经济发展和能源结构变化,分析了酸雨前体物的排放与环境空气中酸性物质及降水中组分的相关性,为政府部门评定大气污染治理效果,制定未来防控政策和规划提供科学决策依据.研究表明,环境空气中NO2、NOx、SO2年均浓度显著相关,说明北京地区环境空气中氮与硫的来源基本相同,均来自化石燃料燃烧排放,这也是酸雨形成的根本原因.北京市大气中的污染物主要来自局地排放源,而降水中硫、氮的湿沉降量与环境空气中SO2、NO2、NOx浓度变化趋势的相关性较差,表明降水中各离子浓度受局地源和外来大气输送共同作用的影响.同时发现降水中硝酸根浓度与机动车数量呈现相同变化趋势,反映出机动车尾气排放的NOx与降水中硝酸根浓度增长密切相关.  相似文献   

8.
长沙市秋季PM2.5中水溶性离子特征及其来源解析   总被引:3,自引:0,他引:3  
为探究长沙市秋季PM_(2.5)水溶性无机离子组成特征和来源,于2017年9月~11月在长沙城区连续采集大气颗粒物PM_(2.5)样品共85个,并用离子色谱仪分析样品中的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)。结果表明,长沙市秋季PM_(2.5)质量浓度的平均值为56. 3±39. 6μg/m~3,总水溶性无机离子质量浓度平均值为29. 47±19. 10μg/m~3,占PM_(2.5)的52. 3%,其中NO_3~-、SO_4~(2-)、NH_4~+是PM_(2.5)中最主要的离子成分。霾天PM_(2.5)平均质量浓度约是清洁天的3倍,NO_3~-、NH_4~+、K~+、Cl~-四种离子的快速增长对霾天PM_(2.5)中离子的贡献最大。由PMF模型解析可知,秋季大气PM_(2.5)主要来源于机动车尾气和燃煤源,而扬尘、生物质燃烧源、工业源和海盐的贡献不到30%。长沙市秋季大气污染呈现机动车尾气等移动源和燃煤等固定源的混合型污染为主。  相似文献   

9.
为探讨内陆山区城市湖北省十堰市冬季PM2.5污染特征及来源构成,于2016年1月12日—2月4日在4个采样点位同步采集PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳的质量浓度.并采集了十堰市主城区城市扬尘、裸露山体尘、建筑水泥尘、燃煤源、机动车尾气、工业源及餐饮油烟源等7类污染源,初步建立十堰市本地的污染源成分谱库,利用统计学方法研究冬季PM2.5的污染特征,并采用CMB受体模型及“二重源解析技术”分析其来源构成.结果表明:冬季采样期间,十堰市ρ(PM2.5)平均值达到110.65 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准24 h浓度限值,并且随空气RH(相对湿度)增加污染加重.城区3个采样点PM2.5化学组成及特征的空间差异不明显.PM2.5中ρ(TC)最高,其次是ρ(NO3-)和ρ(SO42-),与二次反应、机动车尾气、煤燃烧等密切相关.ρ(NO3-)/ρ(SO42-)为1.22,说明机动车尾气的影响较大.二次粒子、燃煤源和机动车尾气是十堰市城区冬季大气PM2.5的主要来源,贡献率分别为51.2%、10.9%和10.1%.研究显示,十堰市城区冬季ρ(PM2.5)超过GB 3095—2012二级标准,PM2.5的污染控制应以二次粒子、燃煤和机动车为主,采取多源控制原则.   相似文献   

10.
根据2006-2015年遂宁市大气降水监测数据,研究了大气降水中离子组成特征和变化趋势,分析了离子来源和酸雨成因。结果表明,近年来遂宁市降水主要集中在夏秋两季,占全年总降水量的88.0%;降雨pH范围为5.60~7.03,雨量加权平均pH为6.59;降雨电导率分布在4.40~33.1μS/cm之间,降水量加权平均电导率为14.8μS/cm,且遂宁市大气降水污染呈现出较好态势。SO_4~(2-)和Ca~(2+)是降水中主要阴、阳离子,共占离子总当量的60.8%;SO_4~(2-)是主要致酸物质,Ca~(2+)是主要中和因子,但分析近10年来它们的变化趋势,发现主要致酸物质组成在发生着变化,而且酸雨类型呈现出由硫酸型逐渐向硫酸-硝酸混合型过渡的趋势。降水pH与5种碱性组分均具有较高相关度,其范围为0.791~0.936;降雨中各组分间相关性较好,化学组分主要来源于人为源和地壳源,部分来源于海盐粒子。得出了区域性污染物排放是影响降水酸性的主要因素的结论,同时也发现降水中SO_4~(2-)的致酸作用和Ca~(2+)的中和作用在下降,Cl~-的致酸作用在上升。  相似文献   

11.
太原市夏季降水中溶解态重金属特征及来源   总被引:4,自引:3,他引:1  
为了解太原市大气降水中溶解态重金属污染特征及来源,采用干湿沉降自动采样器采集了太原市2013~2015年夏季61场降水样品,使用ICP-MS测定了其中12种溶解态重金属,并对其浓度水平、湿沉降通量及来源进行分析.结果表明,太原市2013~2015年夏季降水p H值范围为4.34~7.95,降水量加权平均值为5.37.溶解态重金属平均浓度为236.931μg·L-1(范围66.324~1 029.212μg·L-1),主要元素是Zn和Fe,占总浓度的53.39%.12种溶解态重金属的湿沉降总通量为1.735mg·(m2·d)-1.降水中Ba、Cu、Sr、Zn、As、Cd和Pb的富集因子大于100,受到严重的人为源影响.PMF模型分析表明太原市夏季降水中重金属的主要来源为钢铁冶金、燃煤源、机动车源和地面扬尘,贡献率分别为38.34%、23.06%、20.45%和18.15%.气团的后向轨迹分析表明西南气团和东南气团对太原市夏季降水贡献最大,分别达到38%和35%,运城-临汾-晋中和晋城-长治-晋中的南部工业源污染应该引起重视.  相似文献   

12.
贵阳大气降水化学特征及来源分析   总被引:21,自引:2,他引:19       下载免费PDF全文
对贵阳地区2008年10月1日~2009年9月30日降水样品的pH值和主要阴阳离子组成的进行测定,并运用TrajStat软件模拟后向气团轨迹,分析了贵阳地区降水中离子来源以及影响离子浓度的因素.结果表明,2008~2009全年降水pH值加权平均值为4.23;SO42-是主要阴离子,加权平均值为265.63μeq/L,占总阴离子的69.29%.Ca2+和NH4+是主要的阳离子,加权平均值分别为182.90和112.79μeq/L,分别占总离子的47.10%和29.05%.并且NH4+、Ca2+与SO42-之间存在明显的相关性,说明贵阳大气中可能主要存着(NH4)2SO4、NH4HSO4、CaSO4等物质.总离子浓度季节差异性大,冬季高、夏季低,主要受到降水量、污染物来源等多方面的影响.海相和土壤富集系数表明,Ca2+、Mg2+、K+主要来自地壳源,而SO42-、NO3-主要来自人为源.贵阳后向轨迹表明春季气团轨迹较为杂乱,夏季气团主要来自沿海,秋冬季则主要受中国内陆的影响.  相似文献   

13.
典型污染城市9d连续大气降水化学特征:以贵阳市为例   总被引:5,自引:3,他引:2  
对贵阳地区2008年10月30日~11月7日的一场连续降水进行研究.通过对降水样品的pH值和主要阴阳离子组成的测定,分析了贵阳地区酸雨的主要离子来源以及离子浓度随降水过程的变化规律等.结果表明,此次降水的pH值范围为3.65~7.20,平均值为4.24;SO42-是主要的阴离子,浓度加权平均值为119.06μeq.L-1,占阴离子总量的80.63%;NH4+(38.38μeq.L-1)和Ca2+(48.87μeq.L-1)是主要的阳离子,分别占阳离子总量的37.82%和48.16%.Mg2+、Ca2+、NH4+与SO42-的相关系数分别为0.96、0.91、0.91,说明贵阳地区降水中可能存在以MgSO4、CaSO4、(NH4)2SO4为主的化学物质.大气中不同离子在降水过程被去除的方式和速率有较大的差别,在降水初始阶段,主要富存在粗颗粒中的Mg2+等离子,因粗颗粒迅速被冲刷而较快从大气中去除;而主要富存在细颗粒中的NH4+、SO42-等离子,因细颗粒冲刷速率较慢,而能够在大气中保存较长的时间.  相似文献   

14.
利用西风盛行时在青岛采集的总悬浮颗粒物(TSP)样品,分析其中总P (TP)和溶解态P (DP)浓度与气团后向轨迹的关系,采用正定矩阵因子分析(PMF)和潜在源贡献因子分析(PSCF)方法解析TP和DP的来源及其潜在贡献区域.结果表明:青岛气溶胶中TP主要来自地壳源的贡献(45%);其次是机动车排放源(22%)、燃烧源(21%)和工业源(12%);海盐源的贡献最小(<1%).但DP主要来自人为源的贡献,其中机动车排放源的贡献为35%,燃烧源和/或二次源为28%、工业源为25%;地壳源和海盐源等自然源的贡献分别为9%和1%.相同来源的TP和DP其潜在贡献区域相似,但DP的贡献区域范围更广.地壳源P (TP和DP)的贡献区域集中在沙尘从源地向我国近海传输的路径上,海盐源P的贡献区域位于黄、渤海,工业源P的贡献区域主要为河南、山东以及蒙古国南部等地区,燃烧源/二次源P的主要贡献区域为山东南部和江苏北部区域,机动车排放源P的贡献区域则主要为北京、天津、山东、江苏等区域.  相似文献   

15.
根据2004—2013年降水和环境空气监测资料,统计分析了玉溪市中心城区降水p H值的年变化、季节变化和月变化,结果表明:10年来玉溪市中心城区酸雨频率为1.14%,降水p H最低值4.96,最高值8.66。用spearman秩相关系数法检验分析,降水p H年均值呈平稳偏升趋势,降水p H维持在6.36~7.42,但降水电导率、SO2-4、NO-3、Ca2+、K+呈显著上升趋势;降水出现酸雨的频率按春、夏、秋递减,集中分布在3月、4月、7月、8月。降水酸型为燃煤型,降水阴离子的影响来源主要为工业、生活燃煤、石化燃料的燃烧及机动车排放的尾气;阳离子影响的主要来源为城市工地扬尘和裸露地表土壤尘埃。  相似文献   

16.
太原市空气颗粒物中正构烷烃分布特征及来源解析   总被引:6,自引:3,他引:3  
为明确城市空气颗粒物中正构烷烃分布特征及污染来源,采集采暖和非采暖季环境空气PM10样品和典型排放源(高等植物、燃煤和机动车)样品,利用GC-MS测定正构烷烃,选取诊断参数并结合污染源排放特征讨论PM10中正构烷烃分布和来源,采用主成分分析法定量解析源贡献率.结果表明,环境空气PM10中正构烷烃含量呈较强时空变化,采暖和非采暖季浓度分别为213.74~573.32 ng·m-3和22.69~150.82 ng·m-3,前者总浓度最高是后者的18倍;采暖季郊区点位(JY、JCP、XD和SL)浓度均高于市区,以JY最高(577.32 ng·m-3),非采暖季工业区(JS)总烷烃量(150.82 ng·m-3)明显高于其它点位,是SL总量的7倍.采暖季化石燃料来源烷烃(C n≤C24)与总烷烃量相关性优于植物来源烷烃(C n≥C25),非采暖季相反,表明前者化石燃料输入较后者高.CPI和%WNA指示非采暖季植物贡献率较采暖季高,且植物蜡烷烃随环境压力的增大总产率增加;C max和OEP表明非采暖季PM10中有机质成熟度低于采暖季;两季样品TIC图均存在UCM鼓包,机动车尾气是该城市的重要污染源.PCA解析结果表明太原市环境空气PM10中正构烷烃首要排放源为机动车尾气和高等植物,约占51.28%;其次为煤烟尘,贡献率为43.14%.煤烟尘污染控制协同机动车尾气净化措施的完善将成为降低城市空气颗粒物中正构烷烃浓度的有效途径.  相似文献   

17.
长江源区大气降水化学特征及离子来源   总被引:4,自引:2,他引:2  
基于长江源区冬克玛底流域2013年6~9月采集的64个降水样品,分析了降水的pH值、电导率及离子浓度特征,并应用因子分析、相关分析、富集因子及后向轨迹法,讨论了降水离子主要来源及其与大气环流的联系.结果表明,长江源区冬克玛底流域降水pH值变化范围为5. 26~9. 25,加权平均值为6. 70;电导率变化范围为0. 23~28. 70μS·cm-1,加权平均值为3. 45μS·cm-1,低于瓦里关全球大气本底站降水电导率;总离子浓度变化范围为7. 0~376. 9μeq·L-1,平均总浓度仅为40. 8μeq·L-1;各离子加权平均浓度大小顺序为:HCO_3~- NH_4~+ Ca~(2+) NO_3~- SO_4~(2-) Na~+ Cl~- K~+ Mg~(2+); HCO_3~-、NH_4~+、Ca~(2+)和NO_3~-是降水中的主要离子,占总离子浓度的74. 75%;相对酸度(FA)分析表明,有97. 8%的降水酸度被碱性物质中和,同时中和因子(NF)分析表明NH_4~+和Ca~(2+)对降水酸性的中和起主导作用;研究区降水离子主要来自陆源的贡献,而来自海源的输入则相对较少;结合气团的后向轨迹分析发现,不同来源的总离子浓度差异明显,其加权平均浓度大小顺序为:局地源西风源季风源,表明不同的大气环流背景和气团来源对降水化学组成具有重要影响.长江源区大气降水受人类活动影响较小,其降水化学特征一定程度上可以代表偏远地区的大气质量状况和本底值.研究结果能够为长江源区水质的保护以及为评估人类活动对该区域大气环境的影响提供科学依据.  相似文献   

18.
为研究关中地区远郊背景点位大气PM2.5污染来源,于2014年12月-2015年10月在西安市区西南方向约34 km的背景点位(农村区域,108°44'13"E、34°00'53"N)开展样品采集,共获得218个有效样品,对29种化学组分进行了分析,并运用ME2和PMF模型进行同步解析、相互验证.结果表明:ME2和PMF模型各解析出5类因子,分别为二次无机盐、机动车尾气排放、生物质燃烧、煤烟尘和土壤尘.其中,二次无机盐分担率为42.23%~42.74%,是首要贡献源类,机动车尾气排放(22.40%~24.53%)、煤烟尘(14.57%~14.73%)、生物质燃烧(11.88%~13.42%)是另外3种主要贡献源,而土壤尘(6.28%~7.22%)分担率相对较小. 2种模型同步解析大气颗粒物来源对比表明,ME2和PMF模型同步解析结果一致,各源类的日贡献浓度均呈正相关,其中二次无机盐、机动车尾气排放、土壤尘的相关性较强,R2在0.876~0.960之间,表明解析结果可信.   相似文献   

19.
华南地区酸沉降的硫同位素组成及其环境意义   总被引:16,自引:1,他引:15       下载免费PDF全文
为探讨华南珠江三角洲和湘桂走廊及其周边地区的酸沉降硫源,分别对大气降水、大气SO2、气溶胶和工业用煤、重油及其燃烧产物进行了硫同位素组成测定.研究结果表明,珠江三角洲和湘桂走廊地区的大气降水硫同位素组成有明显的差异,其大气降水δ34S值的变化范围分别为1.9‰~10.3‰和-4.8‰~-0.1‰.湘桂走廊地区大气降水明显的富集轻硫同位素(32S),而珠江三角洲地区则富集重硫同位素(34S).在煤、重油燃烧过程中硫同位素分馏效应研究基础上,将该地区酸雨硫源区分为4种类型,即人为成因硫、天然生物硫、海雾硫和远距离传输硫.在定量计算不同硫源对酸雨贡献的基础上.提出人为成因硫是珠江三角洲和湘桂走廊地区最强的污染硫源,而生物硫在夏季贡献突出,其贡献率分别为47%和52%.传输硫在冬季贡献率可达49%.上述结果,对研究治理华南地区的酸雨具有重要意义.  相似文献   

20.
为了解南宁市冬季期间挥发性有机物(VOCs)污染特征及来源,采用在线连续监测系统于2020年12月9日~2021年2月22日在南宁市区对116种VOCs进行了在线连续观测.结果显示,观测期间VOCs体积分数为37.57x10-9,烷烃、烯烃、芳香烃、OVOCs及卤代烃体积分数占VOCs比例分别为44%、15%、8%、19%和11%.VOCs体积分数白天低,夜晚高;采用OH消耗速率(LOH)和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,发现芳香烃对SOA生成贡献最大,占比为98%,其中苯、间/对二甲苯和甲苯为优势物种;正交矩阵因子(PMF)解析结果表明,冬季期间南宁市VOCs主要来源于:机动车尾气排放源(30.1%)>固定燃烧及生物质燃烧源(22.2%)>工业工艺排放源(16.8%),而OFP贡献较高的源分别为溶剂使用源(23.9%)、固定燃烧及生物质燃烧源(22%)、机动车尾气排放源(21.8%).因此,机动车尾气排放源和固定燃烧及生物质燃烧源应为南宁市冬季的优先管控源类,其次为工业工艺排放源、溶剂使用源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号