首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to determine some physical and mechanical properties of Paulownia tomentosa wood grown in Turkey. The samples trees harvested from Kargi in Corum. Physical properties including air-dry density oven-dry density basic density swelling, shrinkage and oven-dry and air-dry thermal conductivity coefficients; mechanical properties including bending strength, modulus of elasticity in bending, compression strength parallel to grain, hardness, bonding strength were analyzed. Paulownia tomentosa wood's air dry and oven dry densities were determined as 0.317 and 0.294 g cm(-3); basic density was determined as 0.272 g cm(-3); volumetric shrinkage and swelling were determined as 7.78 and 8.41%; tangential, radial and longitudinal air-dry thermal conductivity coefficients were determined as 0.089, 0.090 and 0.133 kcal/mh degrees C, respectively. Fiber saturation point (FSP) was found 28.79%; bending strength, Modulus of elasticity in bending, compression strength parallel to grain and Brinell hardness values (parallel and perpendicular to grain) were determined as 43.56 N mm(-2), 4281.32 N mm(-2), 25.55 N mm(-2), 2.01 kgf mm(-2) and 0.88 kgf mm(-2), respectively. Consequently paulownia wood can be widely used for various purposes such as house construction, furniture making, pulp and paper and handicrafts.  相似文献   

2.
Turkish pine (Pinus brutia Ten.) solid wood was chemically modified to various weight percent gains (WPG) using either acetic, methacrylic, hexanoic and succinic anhydrides. Laboratory soil block decay testing using the brown rot fungus C. puteana and G. trabeum was performed and weight loss calculated. All high degree of modified samples showed good biological resistance and severely reduced degradation. Chemical modification of wood is very important for the prevention of biodeterioration which are environmentally friendly and also not hazardous to human beings.  相似文献   

3.
The forest vegetation simulator (FVS) model was calibrated for use in Ontario, Canada, to predict the growth of forest stands. Using data from permanent sample plots originating from different regions of Ontario, new models were derived for dbh growth rate, survival rate, stem height and species group density index for large trees and height and dbh growth rate for small trees. The dataset included black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) for the boreal region, sugar maple (Acer saccharum Marsh.), white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.) and yellow birch (Betula alleghaniensis Britton) for the Great Lakes-St. Lawrence region, and balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) for both regions. These new models were validated against an independent dataset that consisted of permanent sample plots located in Quebec. The new models predicted biologically consistent growth patterns whereas some of the original models from the Lake States version of FVS occasionally did not. The new models also fitted the calibration (Ontario) data better than the original FVS models. The validation against independent data from Quebec showed that the new models generally had a lower prediction error than the original FVS models.  相似文献   

4.
A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC–BET–alkalinity, and alkalinity–ash content. These comprehensive characterization and analysis results on biochars’ properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.  相似文献   

5.
不同森林恢复类型对土壤生物学特性的影响   总被引:9,自引:0,他引:9  
比较研究了南方红壤侵蚀区4种主要森林恢复类型下土壤中有机质、微生物结构与功能以及酶活性.结果表明,不同的森林恢复类型导致了土壤生物学性状的明显差异.4种森林类型的土壤生物学性状均比长期干扰下CK的高.人工林土壤生物学性状相对比天然次生林土壤差.整合上述指标的土壤生物学肥力指数分别为:天然次生林(0.752)、油茶林(0.611)、杉木林(0.422)、湿地松林(0.439)、对照(0.124).在森林恢复初期,采用自然恢复有效地提高了土壤生物学肥力.导致天然次生林土壤生物学活性相对较高的主要因素是较高的凋落物产量和质量、较高的根系生物量、较丰富的植物种类组成、较优越的土壤生态条件和快速的植物生长.在反映土壤生物学活性的指标选择方面,培养基平均颜色变化率(AWCD)、培养基丰富度和培养基Shannon-Wiener多样性指数与反映土壤生物学活性的大部分指标具有较好的相关关系,是反映土壤生物学活性的较好指标.图3表6参68  相似文献   

6.
The potential environmental risk posed by metals in forest soils is typically evaluated by modeling metal mobility using soil-solution partitioning coefficients (K(d)), although such information is generally restricted to a few well-studied metals. Soil-solution partitioning coefficients were determined for 17 mineral elements (Al, As, Be, Ba, Ca, Cr, Cu, Fe, Ga, K, Li, Mg, Rb, Sr, Tl, U and V) in A-horizon (0-5 cm) soil at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH(aq) varied from 3.9 to 8.1. Sites were dominated by mature sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.) or white pine (Pinus strobus L.). Log K(d) values for all elements could be predicted by empirical linear regression with soil pH (r (2) = 0.17-0.77) independent of forest type, although this relationship was greatly affected by positive relationships between acid-extractable metal concentration and pH(aq) for 13 of the 17 elements. Elements that exhibited strong or moderate (r (2)> 0.29; p < 0.001) relationships with soil pH(aq) in soil water extracts include Al, Ba, Fe, Ga, K, Li, Rb, Tl, V (negative) and Ca (positive). Elemental partitioning in mineral soil was independent of forest type; tree species differed in their response to chemical differences in mineral soil. For example, Rb, Ba, and Sr concentrations in foliage of sugar maple and white birch significantly increased with increasing soil acidity, whereas Rb, Ba, and Sr concentrations in balsam fir and white pine foliage exhibited no response to soil pH(aq). While K(d) values can provide useful information on the potential mobility and bioavailability of mineral elements in forest soils, care must be used when interpreting the relative contribution of solid and aqueous phases to this relationship and the differing responses of vegetation in elemental cycling in forests must also be considered.  相似文献   

7.
This study aims to provide a quantitative framework to model the dynamics of Mediterranean coniferous forests by integrating existing ecological data within a generic mathematical simulator. We developed an individual-based vegetation dynamics model, constrained on long-term field regeneration data, analyses of tree-rings and seed germination experiments. The simulator implements an asymmetric competition algorithm which is based on the location and size of each individual. Growth is parameterized through the analysis of tree-rings from more than thirty individuals of each of the three species of interest. A super-individual approach is implemented to simulate regeneration dynamics, constrained with available regeneration data across time-since-disturbance and light-availability gradients. The study concerns an insular population of an endemic to Greece Mediterranean fir (Abies cephalonica Loudon) on the island of Cephalonia (Ionian Sea) and two interacting populations of a Mediterranean pine (Pinus brutia Ten.) and a more temperate-oriented pine (Pinus nigra Arn. ssp. pallasiana) on the island of Lesbos (NE Aegean Sea), Greece. The model was validated against plot-level observations in terms of species standing biomass and regeneration vigour and adequately captured regeneration patterns and overall vegetation dynamics in both study sites. The potential effects of changing climatic patterns on the regeneration dynamics of the three species of interest were subsequently explored. With the assumption that a warmer future would probably cause changes in the duration of cold days, we tested how this change would affect the overall dynamics of the study sites, by focusing on the process of cold stratification upon seed germination. Following scenarios of a warmer future and under the current model parameterization, changes in the overall regeneration vigour controlled by a reduction in the amount of cold days, did not alter the overall dynamics in all plant populations studied. No changes were identified in the relative dominance of the interacting pine populations on Lesbos, while the observed reduction in the amount of emerging seedlings of A. cephalonica on Cephalonia did not affect biomass yield at later stages of stand development.  相似文献   

8.
Mooney KA 《Ecology》2007,88(8):2005-2014
Insectivorous birds and ants co-occur in most terrestrial communities, and theory predicts that emergent properties (i.e., nonadditive effects) can determine their combined influence on arthropods and plants. In a three-year factorial experiment, I investigated whether the effects of birds on pine and its arthropods differed based on the presence of ants that were predators of most arthropods, but mutualists with tended aphid species. Birds and ants reduced the abundance of most herbivorous and carnivorous arthropods in an additive fashion, with the effects of ants being stronger than those of birds. In sharp contrast, the opposing influences of birds and ants on tended aphid species interacted strongly; ants only increased tended aphid abundance in the absence of birds, while birds only reduced their abundance in the presence of ants. This interaction was mirrored in total herbivore abundance because tended aphids dominated the herbivore community. I develop a novel lexicon to discuss the emergent properties from these effects of opposing sign (predation, mutualism). Despite having emergent effects on herbivores, birds indirectly increased pine wood and foliage growth to a similar extent whether or not ants were present, while ants had no detectable effects. Birds also indirectly increased the abundance of some pine phloem monoterpenes, but these effects differed based on the presence or absence of ants. Thus, I report on a novel yet possibly widespread indirect interaction between intraguild predators, herbivore mutualists, and plant traits (growth, secondary chemistry) mediated through a species-rich community of arthropods.  相似文献   

9.
The gap model ZELIG was validated for red spruce–balsam fir–yellow birch and yellow birch–sugar maple–balsam fir forest types in southern Quebec, Canada. Long-term historical data originating from the Lake Edward Experimental Forest, La Mauricie National Park, were used. The effect of the variation in plot size, representing the space within which trees uptake site resources, was also examined. Several species were included in both forest types: red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), yellow birch (Betula alleghaniensis Britton), white birch (Betula papyrifera Marsh.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.) Carr.) and northern white cedar (Thuja occidentalis L.). The pattern of change in basal area growth varied among species, ranging from a steady increase to a more or less rapid decline. There was a good agreement between observations and predictions for yellow birch, red spruce, red maple, sugar maple, balsam fir and northern white cedar. Plot size had a significant impact on the dynamics of the different species. Depending on the species, the decline was accelerated, the amplitude of the fluctuations varied, or the maximum basal area reached changed. Predicted regeneration varied among species and the number of seedlings generally increased with increase in plot size. The pattern of development for most species was related to their life characteristics. The results highlighted the fact that there is a critical lack of knowledge and data on the dynamics of regeneration from the seedling to the sapling stages for the two forest types studied, which resulted in poor predictions for some species. As the life characteristics varied among species, the use of only one plot size for all species may not be realistic.  相似文献   

10.
11.
Hardiman BS  Bohrer G  Gough CM  Vogel CS  Curtisi PS 《Ecology》2011,92(9):1818-1827
The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests.  相似文献   

12.
Summary. Stem volatile extracts from ten trees that are sympatric with the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) were assayed by gas chromatographic-electroantennographic detection analysis (GC-EAD). The extracts were from the primary host, ponderosa pine, Pinus ponderosa Dougl. ex Laws. (Pinaceae); two nonhost angiosperms, California black oak, Quercus kelloggii Newb. (Fagaceae), and quaking aspen, Populus tremuloides Michx. (Salicaceae); and seven nonhost conifers, white fir, Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. (Pinaceae), incense cedar, Calocedrus decurrens (Torr.) Florin (Cupressaceae), Sierra lodgepole pine, P. contorta murrayana Grev. & Balf. (Pinaceae), Jeffrey pine, P. jeffreyi Grev. & Balf. (Pinaceae), sugar pine, P. lambertiana Dougl. (Pinaceae), Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), and mountain hemlock, Tsuga mertensiana (Bong.) Carr. (Pinaceae). Sixty-four compounds were identified from the ten trees, 42 of which elicited antennal responses in D. brevicomis, usually in both sexes. In addition, several synthetic compounds, including a number of the antennally-active compounds from the extracted trees and some bark beetle pheromone components, elicited antennal responses in a manner similar to that observed with the extracts. Of the antennally-active compounds known to be present in trees sympatric with D. brevicomis, only geraniol was unique to its host. Four antennally-active compounds were found in the host and in other conifers; five compounds were found only in nonhost conifers; eight compounds were found in either or both of the nonhost angiosperms; eight compounds were found in either or both of the angiosperms and in nonhost conifers, but not in the host; and 19 were found in both the host and in angiosperms and/or nonhost conifers. Several bark beetle pheromone components were found in the stem volatile extracts. Conophthorin was identified from both nonhost angiosperms; exo-brevicomin was identified in A. concolor; verbenone was identified from a number of nonhost conifers; and chalcogran was identified from P. tremuloides. The number of nonhost volatile chemicals that D. brevicomis encounters and is capable of detecting, and the diversity of sources from which they emanate, highlight the complexity of the olfactory environment in which D. brevicomis forages. This provides a basis for further work related to chemically-mediated aspects of foraging in this insect and perhaps other coniferophagous bark beetles, and highlights the need to consider foraging context in the design and implementation of semiochemical-based management tactics for tree protection.  相似文献   

13.
The various indigenous uses and structure of chir pine forests were studied in Uttaranchal state of the Indian Republic. A questionnaire survey was conducted in 50 villages of Uttaranchal to gather information on the indigenous uses of chir pine. For the study of community composition and structure of chir pine forest, at least 15 quadrats of 10 x 10 m were selected randomly across various localities, and the number of individuals, along with other dominant tree and shrub species, were enumerated in each quadrat. About 10 indigenous uses of chir pine were prominent in Uttaranchal. Besides resin, an important non-wood product, different parts of chir pine, such as cones, trunk, stems, wood, leaves and bark, were used by the local people. Chir pine is a subject of the folklore and mythology of indigenous cultures in Uttaranchal. Chir pine forest formed three major communities in Uttaranchal viz., sal-pine (Shorea robusta-Pinus roxburghii), pine pure stands and oak-pine (Quercus leucho-trichophora-Pinus roxburghii). These communities sustained various multiple-use trees and shrubs along with various edible mushrooms (eg. Agaricus campestris, Morchella esculenta and Sparassis crispa). The results of this study are discussed in the light of chir pine conservation and management policies.  相似文献   

14.
15.
A field experiment was carried out to determine the effects of walnut (Juglans regia L.) and pine (Pinus sp.) leaves on bread wheat (Triticum aestivum L.) growth and weed control, during 2001-02 and 2002-03 growing seasons in East Mediterranean region of Turkey. In this research, the treatments were: applications of ground walnut leaves (GWL) and ground pine leaves (GPL) at 19 g/m2 dose at Zadoks-11, applications of 200, 400 and 800 cc/m2 of walnut leaves extract (WLE2, WLE4 and WLE8 respectively), pine leaves extract (PLE2, PLE4 and PLE8 respectively), mixture extract of 200 cc walnut and 200 cc pine (ME), herbicide application (HA) at 8 g/m2 dose at Zadoks-21, and control (C) without any treatment. The results have indicated that the effects of treatments were significant for grain yield (GY), plant height (PH), flag leaf length (FLL), weed number per square meter (WN), but non significant for grain number per head (GN), grain weight per head (GW), 1000 grain weight (1000 GW), flag leaf width (FLW), head number per square meter (HN), vegetative period (VP), grain filling period (GFP) and days to maturity (DM).  相似文献   

16.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

17.
Thaxton JM  Platt WJ 《Ecology》2006,87(5):1331-1337
Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.  相似文献   

18.
Summary. Host selection in tree-killing bark beetles (Coleoptera: Scolytidae) is mediated by a complex of semiochemical cues. Using gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses, we conducted a comparative study of the electrophysiological responses of four species of tree-killing bark beetles, the Douglas-fir beetle, Dendroctonus pseudotsugae, Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis Kirby, and the western balsam bark beetle, Dryocoetes confusus Swaine, to volatiles captured by aeration of 1) bole and foliage of four sympatric species of conifers, Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, lodgepole pine, Pinus contorta var. latifolia Engelm., interior spruce, Picea engelmannii x glauca, and interior fir, Abies lasiocarpa x bifolia, and 2) con- and heterospecific beetles at three stages of attack. We identified 13 monoterpenes in the conifers and nine compounds in the volatiles of beetles that elicited antennal responses. There was no qualitative difference in the terpene constitution of the four species of conifers and very little difference across beetle species in their antennal response to compounds from conifers or beetles. The lack of species-specific major or minor components in conifers suggests that beetles would need to detect differences in the ratios of different compounds in conifers to discriminate among them. Attraction to hosts and avoidance of nonhost conifers may be accentuated by perception of compounds emitted by con- and heterospecific beetles, respectively. The 22 compounds identified are candidate semiochemicals with potential behavioural roles in host location and discrimination.  相似文献   

19.
A stand-scale forest model has been developed that dynamically simulates, besides carbon (C) and water (H2O) fluxes, wood tissue development from physiological principles. The forest stand is described as consisting of trees of different size cohorts (for example, dominant, co-dominant and suppressed trees), either of the same or of different species (deciduous or coniferous). Half-hourly C and H2O fluxes are modeled at the leaf, tree and stand level. In addition to total growth and yield, the model simulates the daily evolution of tracheid or vessel biomass and radius, parenchyma and branch development. From these data early and latewood biomass, wood tissue composition and density are calculated. Simulation of the labile C stored in the living tissues allows for simulation of trans-seasonal and trans-yearly effects, and improved simulations of long-term effects of environmental stresses on growth. A sensitivity analysis was performed to indicate the main parameters influencing simulated stem growth and wood quality at the tree and stand level. Case studies were performed for a temperate pine forest to illustrate the main model functioning and, more in particular, the simulation of the wood quality. The results indicate that the ANAFORE model is a useful tool for simultaneous analyses of wood quality development and forest ecosystem functioning.  相似文献   

20.
苏南丘陵区主要林分类型土壤抗蚀性分析   总被引:5,自引:0,他引:5  
以苏南丘陵区杉木、马尾松、麻栎、毛竹等4种林分土壤为研究对象,研究了该区域内不同林分类型土壤的抗蚀性。结果表明:不同林地土壤的抗蚀指数、抗冲指数、抗剪强度均表现出明显的规律性,即随着土壤深度的增加,呈减小的趋势;对不同林地土壤的抗蚀指数(S)随浸水时间(t)的变化过程进行拟合,发现本研究区内土壤的抗蚀指数与浸水时间呈二次多项式函数关系,其通式为S=at2+bt+c;选取土壤理化性质、土壤团聚体特征、抗冲、抗剪等17个指标,以主成分分析为基础,筛选出了土壤抗蚀性的最佳评价指标体系;计算各林地土壤的抗蚀性综合指数,得出各林地土壤抗蚀性由强到弱依次为:毛竹(1.33),杉木(0.35),麻栎(-0.75),马尾松(-0.89)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号