首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
生物炭作为1种环境友好型吸附材料,可有效去除并回收水体中的磷,由此也成为当前的研究热点之一。综述了目前国内外生物炭吸附磷酸盐及磷素回收研究现状,主要总结了控制生物炭吸附磷酸盐的4种主要机制,阐述了影响生物炭吸附除磷过程中的主要影响因素,介绍了目前应用研究的方向并提出生物炭在实际应用中所面临的问题并对未来研究方向进行了展望,以期为未来研究及推广应用提供理论支撑。  相似文献   

2.
农业废弃物基生物炭对水溶液中镉的吸附效果与机制   总被引:1,自引:2,他引:1  
龚沛云  孙丽娟  宋科  孙雅菲  秦秦  周斌  薛永 《环境科学》2022,43(6):3211-3220
以畜禽粪便(牛粪、鸡粪、猪粪)为原料分别在300℃和700℃下制备生物炭,以作物秸秆(小麦秸秆、水稻秸秆、玉米秸秆)为原料分别在300℃和500℃下制备生物炭,利用比表面积和孔径分析仪、扫描电镜、傅里叶红外光谱仪、X射线衍射仪和CHN分析仪等对农业废弃物基生物炭的理化性质、表面结构和元素组成进行表征,研究生物炭理化性质差异和其对镉吸附效果和机制.结果表明,不同农业废弃物基生物炭对Cd2+的等温吸附符合Langmiur方程,拟合结果发现随着热解温度的升高,牛粪、鸡粪和猪粪基生物炭对Cd2+的最大吸附量分别从83.40、19.65和96.74 mg·g-1增加至106.54、 268.89和164.53 mg·g-1;而不同热解温度下制备的秸秆基生物炭对Cd2+的最大吸附量差异不显著.农业废弃物基生物炭呈碱性,除牛粪生物炭外,灰分含量随热解温度上升而增加.随着热解温度的上升,生物炭孔隙结构变丰富,含氧官能团增加,出现芳香结构.通过定量分析,发现生物炭Cd2+总...  相似文献   

3.
改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制   总被引:5,自引:0,他引:5  
史月月  单锐  袁浩然 《环境科学》2019,40(6):2783-2792
本文以废弃稻壳为原料,通过不同改性方法将其制成生物炭吸附剂,并用于水体中甲基橙(MO)的吸附.通过氮吸附、X射线衍射(XRD)、傅立叶转换红外光谱(FT-IR)、扫描电镜分析(SEM)、热重分析(TG)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术分析了改性剂种类、浸渍比和热解温度对生物炭的物理化学性质及对MO吸附量的影响,发现热解温度为400℃,以ZnCl_2为改性剂,浸渍比为2∶1时制备的生物炭Z2RT400对MO的去除效果最好.以Z2RT400为吸附剂,探究吸附剂添加量、吸附时间、初始污染物浓度、溶液pH等对甲基橙吸附效果的影响,结果表明,饱和吸附时间为420 min,吸附反应的最佳pH为4,当吸附剂用量为10 mg,初始甲基橙浓度为2 000 mg·L~(-1)时,Z2RT400对MO的最大吸附量可达1 967. 72 mg·g~(-1);当吸附剂添加量为80 mg时,去除率最高可达99. 52%.此外,对吸附机制进行分析,发现吸附等温线数据符合Freundlich模型,吸附动力学数据符合拟二级动力学模型,说明吸附以化学吸附为主,物理吸附为辅.因此,废弃稻壳为原料改性制备的生物炭可作为高效的有机染料吸附剂,并应用于水体中污染物的治理.  相似文献   

4.
以市政污泥为前驱体,采用硼酸掺杂改性共热解法,制备了污泥生物炭(BC600)和B掺杂污泥生物炭(BBC600),采用SEM、BET、FTIR、Zeta电位和静态接触角等手段对材料进行了结构表征,研究了BC600和BBC600对水中1,2-二氯乙烷(1,2-DCA)的吸附行为、机制和影响因素.结构表征结果表明,B掺杂改性后,生物炭中B元素含量、比表面积和孔容分别提高了76%、48%和30%;B掺杂改性对生物炭表面电荷及亲疏水性影响不大,BC600和BBC600表面均带有负电荷,接触角均<90°,两者均具有较好的亲水性.吸附实验结果表明,BBC600对1,2-DCA的吸附性能优于BC600,缘于BBC600更大的比表面积和强度更高的含氧官能团;准一级动力学方程可以较好描述BC600吸附1,2-DCA过程,准二级动力学方程能较好拟合BBC600吸附1,2-DCA过程,颗粒内扩散不是影响吸附速率的唯一限速步骤;碱性条件下生物炭材料更加分散和稳定,且其含氧官能团去质子化,供电子能力增强,有利于对1,2-DCA的吸附;腐殖酸(HA)对BC600吸附1,2-DCA呈现低浓度促进,高浓度抑制的作...  相似文献   

5.
以城镇污水处理厂剩余污泥为原料制备生物炭,研究了其对垃圾渗滤液中污染物吸附性能,旨在探索市政污泥综合利用方法和"以废治废"的治理技术途径。结果表明:当生物炭投加量为20 g/L时,垃圾渗滤液的COD和TP去除效果最佳,去除率分别为36.76%和78.36%,NH_4~+-N去除率随生物炭投加量增加而增加;上述三者不同污染物去除的最佳反应接触时间分别为50 min、30 min和≥2 h;生物炭对重金属离子的吸附机理主要表现为离子交换作用。  相似文献   

6.
采用铁、锰对水稻秸秆生物质碳(BC)进行改性,将制备所得的锰改性生物碳(Mn-BC)和铁锰改性生物碳(Fe-Mn-BC)作为吸附剂,用于对水中Sb(Ⅲ)的吸附实验.通过全自动比表面积及孔隙度分析仪(BET)、扫描电子显微镜(SEM)对吸附剂的表面性质进行研究,在吸附最佳pH值和投加量条件下开展等温吸附、动力学吸附及体系...  相似文献   

7.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7. 93 mg/g。  相似文献   

8.
在不同热解温度、热解时间及配比下,利用生活污泥与小麦秸秆共热解制备污泥基生物炭(WB),研究了不同条件对WB吸附性能的影响,并以吸附性能为评价指标,应用响应面分析法优化了WB的最佳工艺条件,并研究了最佳WB对水溶液中Cr(VI)的吸附规律。结果表明:1)热解温度、热解时间和配比对WB吸附能力均有显著影响;2)制备WB的最佳热解温度、热解时间、配比分别为503.19℃、120 min、m(麦秆)∶m(污泥)=1.2;3)Langmuir模型和Freundlich模型都能很好地表征WB对Cr(VI)的吸附特征,二级动力学模型可以更好地解释WB对Cr(VI)的吸附机制。  相似文献   

9.
该文以花生壳为原料热解得到花生壳生物炭,并用铁盐对其进行改性,得到改性花生壳生物炭。利用改性花生壳生物炭吸附磷酸盐,研究了吸附动力学和吸附等温线曲线,同时探究了pH对吸附除磷效果的影响。并利用吸附有磷酸盐的改性生物炭作为小麦种子生长的基质。结果表明,改性花生壳生物炭对磷的最大吸附量为1.11 mg/g,吸附动力学符合准二级动力学拟合方程,吸附曲线符合Langmuir吸附模型,主要为单层吸附过程,吸附过程的最适pH为4~10。同时,吸附有磷酸盐的改性花生壳生物炭能提高小麦种子的发芽率,并且能促进早期幼苗的生长。该改性生物炭可以有效吸附磷酸盐,缓解水体的富营养化,还能作为缓释肥料,实现环境治理与资源化利用。  相似文献   

10.
污泥生物炭制备吸附陶粒   总被引:3,自引:0,他引:3  
以城市污泥热解产生的生物炭(BC)与高岭土(KL)为原料制备吸附陶粒(SKC),研究其对环丙沙星(CIP)的吸脱附性能,开展吸附动力学和等温吸附特性研究,结合形貌、孔结构、物相组成、表面电位探讨其吸附机制,利用TCLP法研究重金属浸出特征.结果表明BC与KL以6∶4的质量比混合造粒,经1 050℃烧结5 min得到的SKC对CIP有明显的吸附效果,去除率达65.34%;SKC对CIP的吸附符合二级动力学模型,在不同质量浓度下的吸附特性适用于Freundlich等温吸附模型,吸附过程同时存在物理和化学吸附.SKC具有良好的孔隙结构,物相组成以硅铝氧化物、铁氧化物和金属磷酸盐为主,既能降低重金属的浸出毒性又具有良好的CIP吸附去除效果,有望为处理废水中高浓度CIP提供一种低成本可回收的吸附材料,也为BC的规模化安全利用提供了新思路.  相似文献   

11.
通过对小麦秸秆生物炭(BC)进行碱和磁复合改性得到改性小麦秸秆生物炭(FKC),在SEM-EDS、 BET、 FT-IR、 XRD和VSM等表征的基础上,研究了FKC对水中Cd~(2+)的吸附特性及温度、pH值和投加量等对吸附特性的影响,探讨了碱和磁复合改性提高小麦秸秆生物炭吸附Cd~(2+)性能的机制.结果表明,与BC相比,KFC结构疏松多孔,表面积增加了19.11倍,O—H、■等芳香族和含氧官能团数量增多,并且出现新的官能团Fe—O. FKC具有磁性,其磁化强度为8.43 emu·g~(-1),能够回收重复使用. FKC对Cd~(2+)的吸附更符合准二级动力学和Langmuir等温吸附模型,表明其主要以化学吸附为主,FKC的理论最大平衡吸附量为23.44mg·g~(-1),是BC的1.47倍. FKC对Cd~(2+)的吸附是自发的吸热过程.在pH为2~8范围内,随pH的升高FKC的吸附能力逐渐提高.生物炭的投加量为10 g·L~(-1)较好.经3次"吸附-解吸-再吸附"循环后,FKC对Cd~(2+)的吸附量仍达到17.71mg·g~(-1),表明其有良好的重复利用性.该研究结果可为碱和磁复合改性小麦秸杆生物炭应用于Cd污染废水处理提供理论指导.  相似文献   

12.
市政污泥生物碳对重金属的吸附特性   总被引:2,自引:0,他引:2       下载免费PDF全文
李江山  薛强  王平  刘磊 《环境科学研究》2013,26(11):1246-1251
采用市政污泥在300℃缺氧条件下制得污泥生物碳,研究了污泥生物碳添加量、溶液pH及吸附反应时间对溶液中Pb2+、Cu2+、Zn2+吸附效果的影响,并分析了各因素影响机制及污泥生物碳对重金属的吸附机理. 结果表明,污泥生物碳对溶液中重金属的去除率与重金属水合离子半径呈负相关,随着污泥生物碳添加量的增加,溶液中重金属的去除率不断增加,但单位吸附量总体上呈下降趋势. 重金属吸附量随溶液pH的增加而增大,当溶液初始pH为6.00时,污泥生物碳对溶液中Pb2+、Cu2+和Zn2+的吸附量最大,分别达42.941、25.769和12.484mg/g. 伪二级动力学方程可有效描述溶液中重金属离子在生物碳上的吸附过程,重金属在污泥生物碳表面的吸附主要受化学反应控制,Pb2+、Cu2+和Zn2+的平衡吸附量分别为39.747、6.849和10.004mg/g,达到吸附平衡的时间为Pb2+>Zn2+>Cu2+.   相似文献   

13.
两种木材生物炭对铜离子的吸附特性及其机制   总被引:17,自引:4,他引:17  
为探索高效利用废弃生物质资源制备生物炭去除水体和土壤中Cu~(2+)污染的可行性,本文以常见的农林废弃物苹果树枝和梧桐木锯末为原料,采用450℃限氧热裂解法制备生物炭,通过两种生物炭对Cu~(2+)的批量吸附试验,利用4种等温吸附模型(Langmuir、Freundlich模型、Temkim、D-R模型)和4种吸附动力学模型(准一级动力学、准二级动力学、Elovich模型、颗粒内扩散模型)研究了苹果枝和锯末生物炭对Cu~(2+)的吸附行为.同时,使用FTIR红外、SEM和BET比表面积及孔径分析等技术表征了生物炭的理化性质,研究了两种生物炭对Cu~(2+)吸附机制,分析了两种生物炭之间的吸附特性差异及其影响因素.结果表明:(1)苹果枝生物炭在3 h达到吸附平衡,理论最大吸附量为15.85 mg·g~(-1),锯末生物炭在6h达到吸附平衡,理论最大吸附量为17.44 mg·g~(-1),与其他研究相比,这两种生物炭体现了较高的Cu~(2+)吸附性能;(2)两种生物炭对Cu~(2+)的热力学吸附均较好地符合Langmuir模型,表明吸附过程主要是近似单分子层的有益吸附;动力学吸附均符合准二级吸附动力学模型,表明其对Cu~(2+)的吸附包括表面吸附、颗粒内扩散和液膜扩散等多种过程;(3)吸附机制主要包括静电吸附,配体(酚羟基)/离子(H+)交换和阳离子—π键作用.  相似文献   

14.
氧化镁基生物质炭高效去除水体中磷的特性   总被引:1,自引:1,他引:0  
王彬斌  林景东  万顺利  何锋 《环境科学》2017,38(7):2859-2867
利用花生壳为前驱体,在高温限氧条件下,将氧化镁(MgO)负载于生物质炭(BC)表面制备出氧化镁基生物质炭(MgOBC)复合材料.系统研究了MgO-BC对水体中P的吸附特性,并探讨了溶液pH值、接触时间、竞争离子等因素对P的吸附效果的影响.结果表明,P的最佳吸附初始pH为7~9,过酸过碱的环境均不利于P的吸附;P的吸附过程可在540 min内达到平衡,且动力学曲线较好地符合伪一级和伪二级动力学模型,拟合系数可达97.3%和99.0%;当Cl~-、HCO_3~-、NO_3~-等共存离子的量浓度达到P的10倍时,MgO-BC对P仍具有较强的吸附能力;P的吸附过程较好地符合Langmuir等温模型,拟合系数达99%,理论最大吸附容量为138.07 mg·g~(-1),远高于其它未经改性或改性的生物质炭和几种典型P吸附剂的吸附容量.此外,吸附P后的复合材料可作为肥料施入土壤,可有效实现P的再利用.综上所述,该MgO-BC复合材料在净化实际P污染水体中有着广阔的应用前景.  相似文献   

15.
Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性   总被引:3,自引:0,他引:3  
为处理含磷废水和实现沼渣资源化利用,将农业废弃物沼渣制备成生物炭(ZZs),通过Ca Cl2和MgCl2溶液对其进行浸渍改性,探究改性沼渣生物炭(CMZZs)对水体中磷的吸附特征.结果表明,改性后沼渣生物炭钙镁含量分别是改性前的1. 3和15. 4倍; SEM-EDS、BET、FTIR和XRD等测定表明,改性未改变生物炭表面化学官能团种类,但改性后生物炭出现新的衍射峰,与标准卡片对比后认为可能存在Mg(OH)_2、MgO等物质.当温度为303 K,溶液pH为9. 0时,CMZZs最大吸附量为76. 92 mg·g~(-1),是改性前的30. 1倍.等温吸附实验数据符合Freundlich方程,为多层吸附.吸附动力学分析发现,改性后生物炭在100 min内基本达到吸附平衡,吸附过程符合假二级动力学方程,以化学吸附为主.上述结果说明钙镁改性沼渣生物炭对于去除水中磷具有潜在价值.  相似文献   

16.
研究了四氧化三铁(Fe_3O_4)改性沸石改良底泥对水中磷酸盐的吸附特征,并通过形态分级提取法研究了改良底泥中Fe_3O_4改性沸石吸附磷后的形态分布特征.结果表明,与准一级和准二级动力学模型相比,Elovich模型更适合用于描述未改良和改良底泥对水中磷酸盐的吸附动力学过程.未改良和改良底泥对水中磷酸盐的等温吸附实验数据可以采用Langmuir、Freundlich和Dubinin-Radushkevic模型进行描述.未改良和改良底泥对水中磷酸盐的吸附能力随着pH值的增加而下降,且水中共存的阳离子会促进底泥对磷酸盐的吸附,促进作用的大小排序为Ca~(2+) Mg~(2+) K~+,而水中共存的HCO_3~-会抑制底泥对磷酸盐的吸附.未改良和改良底泥吸附水中磷酸盐的机制包括静电吸引作用和配位体交换作用,而改良底泥中Fe_3O_4改性沸石则主要依靠配位体交换作用吸附去除水中的磷酸盐.改良底泥对水中磷酸盐的吸附能力明显优于未改良底泥,并且前者的磷释放风险低于后者.改良底泥中Fe_3O_4改性沸石吸附磷酸盐后将近49. 4%的磷会以潜在可移动态磷形式存在,需要及时采用外加磁场作用将Fe_3O_4改性沸石从底泥中移出,以消除Fe_3O_4改性沸石上磷发生再次释放的风险.以上的研究结果初步显示,Fe_3O_4改性沸石适合作为一种底泥改良剂用于河道内源磷释放的控制.  相似文献   

17.
生物炭对水体中铵氮的吸附特征及其动力学研究   总被引:12,自引:0,他引:12  
以生物炭作为吸附剂,通过静态实验研究了生物炭对水体中铵氮的吸附特性,并从动力学角度探讨了其吸附机理。结果表明,生物炭对铵氮的吸附在60min内基本达到吸附平衡,其吸附量随着水溶液中铵氮的增加而增加,Langmuir方程能够更好的描述铵氮在生物炭上的等温吸附行为,最大吸附量为l.24mg/g,铵氮在生物炭上的吸附动力学数...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号