共查询到19条相似文献,搜索用时 78 毫秒
1.
为了解贵州省旱地土壤和玉米籽粒As含量分布特征,并评估其玉米种植的安全性,采集自然土壤样品468个,旱地表层土壤样品1260个,相应玉米籽粒样品980个,测定其As含量和土壤基本理化性质,运用单因子污染指数法对样品污染程度进行评价.结果表明:①旱地土壤ω(As)范围为0.35~758.53 mg·kg-1,几何平均值为23.28 mg·kg-1,经独立样本T检验,贵州省旱地土壤的ω(As)显著高于自然土壤的21.29 mg·kg-1(P<0.05),表明旱地土壤存在As累积效应;与《农用地土壤污染风险管控标准》(GB 15618-2018)筛选值相比,土壤样品超标率为33.81%.②玉米籽粒ω(As)范围为0.001~0.868 mg·kg-1,几何平均值为0.064 mg·kg-1,0.61%的玉米籽粒样品超过《食品中污染物限量》(GB 2762-2017)的限值,超标点位分布于毕节市、黔西南州和铜仁市.③将玉米籽粒作为饲料和粮食使用时,贵州省旱地土壤均可以安全种植玉米.研究表明贵州省旱地土壤As污染较严重,整体上可实现玉米安全种植,但涉As有色金属矿区周边种植玉米需要加以关注. 相似文献
2.
广西珊瑚钨锡矿耕作区土壤和玉米汞含量及污染评价 总被引:2,自引:0,他引:2
对广西珊瑚钨锡矿周边耕作区土壤和玉米进行采样分析,采集土壤样、玉米样各39个。采用原子荧光测汞仪进行分析测定法,研究土壤和玉米植株的不同部分(根、茎、叶和果)中的汞含量。结果表明,土壤汞含量为(0.130 9±0.058 6)μg/g,玉米植株汞含量为(0.013 8±0.003 1)μg/g。靠近矿区的土壤汞含量高,远离矿区的低;靠近居民区的土壤汞含量最高,尾砂场、废石场的次之。其中有10.3%的土壤样汞含量超过了我国《土壤环境质量标准》(GB 15618-2008)二级标准的最低限值(汞≤0.2μg/g),表明珊瑚钨锡矿周边耕作区土壤具有一定的汞污染。矿区汞污染对农作物植株汞有一定的影响,但是玉米果实汞含量((0.003 5±0.001 1)μg/g)没有超过国家相关标准的限值(汞≤0.02μg/g)。 相似文献
3.
4.
铜仁汞矿区土壤汞污染现状调查研究 总被引:1,自引:0,他引:1
为了进一步对废弃汞矿污染区的生态环境进行跟踪调查及科学的评价,2015年通过对铜仁市废弃汞矿区周围的稻田、旱田及菜地土壤汞污染现状调查分析。采用S型随机抽样方式,并使用原子荧光光度法对研究对象进行分析。结果表明:万山镇、云场萍及路腊村汞矿区稻田土壤总汞(THg)含量平均值分别为123.75、79.33、21.89 mg/kg;其旱田土壤THg含量平均值分别为:117.20、73.34、19.90 mg/kg;其菜地土壤THg含量平均值分别为129.40、81.78、26.50 mg/kg;且,万山汞矿区甲基汞(Me Hg)含量平均值分别为6.48(稻田)、4.80(旱田)、6.40μg/kg(菜地);云场萍汞矿区Me Hg含量平均值分别为3.73(稻田)、2.47(旱田)、6.40μg/kg(菜地);路腊村汞矿区Me Hg含量平均值分别为1.92(稻田)、0.87(旱田)、2.47μg/kg(菜地)。以上结果说明万山废弃汞矿区的污染程度高于云场萍废弃汞矿区及路腊村废弃汞矿区。 相似文献
5.
6.
7.
8.
在深圳市采集并分析了200个表层土壤样品中的汞浓度,并利用克里格插值与单因子污染指数评价等方法研究了该区土壤表层汞污染数量结构与空间分异特征.结果表明,深圳市土壤汞平均值为70.52ng/g,中值为58.82ng/g.37%的样点土壤汞浓度超过土壤背景值,5%的样点处于中度以上汞污染水平.样点的土壤汞浓度随着的高程和坡度的增加呈现出均值降低,偏差减小的变化趋势.汞污染严重的区域为南山蛇口工业区、宝安西部工业区、龙岗大工业区与东部工业区和罗湖商业区等,人类活动与城市土壤汞浓度密切相关,污染的主要来源为工业区化石燃料燃烧、含汞废物排放、商业区长期的人类活动以及生活垃圾的处理等. 相似文献
9.
10.
11.
湘黔汞矿区土壤汞的化学形态及污染特征 总被引:12,自引:1,他引:12
以湘黔汞矿带内典型矿区土壤为对象,基于BCR三步法和氢化发生-等离子体发射光谱技术,研究了湘黔汞矿区土壤中汞的形态含量及污染特征.结果表明,矿区土壤中汞以残渣态为主,其次为有机-硫化态,酸交换态和铁锰氧化态所占比例较少,各形态汞的分配系数依次为:残渣态(85.77%)>>有机-硫化态(12.44%)>>Fe-Mn氧化态(0.93%)≈酸交换态(0.86%);土壤中各形态汞含量与砂粒含量正相关,与粘粒含量负相关,并随土壤pH升高而增加;各形态汞含量存在明显的空间分异,垂直空间上体现为表层土壤中的含量高于亚表层土壤,水平空间上表现为随着与污染源距离的增加而含量急剧降低,并因土地利用类型不同、区域不同而差异明显.人类活动引起的外源输入性汞污染对矿区土壤中汞的环境毒性和污染特征产生了重大影响. 相似文献
12.
贵州万山汞矿区汞的环境污染及对生态系统的影响 总被引:34,自引:9,他引:34
通过对贵州万山汞矿地区环境样品(水、土壤、植物、农作物和动物)的系统研究,发现该地区的环境汞污染以土壤、大气污染为主,水体基本处于正常范围.土壤汞含量为24.31~347.52mg·kg-1,比全国土壤平均值高出2~3个数量级;水中汞含量除了冶炼厂荷花池中含量较高外,其它水体为0.10~0.68ng·mL-1.由于矿山长期的开采和冶炼,整个环境的汞污染严重,当地的植被、农作物、动物中存在明显的汞蓄积,各种植物不同部位的汞含量为0.47~331.4mg·kg-1;苔藓可以高度富集汞. 相似文献
13.
14.
万山汞矿区土壤汞污染及其防治研究 总被引:1,自引:0,他引:1
万山汞矿区具有600多年采矿历史,当地的生态破坏问题不容忽视.汞具有挥发性,能在水体、大气、土壤等环境介质中迁移转化,增大了汞污染治理难度.同时汞作为人体非必须的有毒重金属元素,对动、植物及人类具有极大的危害性.在此基础上,探讨了贵州万山汞矿区周边土壤的汞污染现状、来源、形态及其迁移转化规律,提出了相应的治理措施,以期能为今后深入开展汞污染治理研究提供理论依据与技术指导. 相似文献
15.
土壤重金属污染导致土壤环境质量显著降低,影响食品安全、水源水质和空气质量等,严重威胁人类的生存和发展。汞(Hg)作为一种全球性的重金属污染物,广泛分布于多种环境介质中,其中土壤是全球汞最大的储存库。土壤中的汞可通过多种暴露途径进入人体,危害人类健康。伴随着全球气候变暖和人为活动加剧,全球土壤汞污染问题日益严重。然而,目前有关土壤汞污染的基础数据较为缺乏,大范围的土壤汞污染空间分布特征分析相对较少,对于土壤汞污染主控因子的分析方法缺乏系统的阐述。因此,本文基于文献调研的方法,分析了全球的土壤汞污染分布特征,发现全球土壤汞污染主要集中在矿区及工业聚集区,阐述了人为因素、气候条件和土壤环境因素等对土壤汞含量变化的影响,并总结了可应用于土壤汞污染主控因子分析的常用方法及其优缺点。同时,本文对未来土壤汞污染调查和研究进行了3方面的展望,以期为更加科学合理的解决土壤汞污染问题做出贡献。 相似文献
16.
本文通过对玉兰汞矿及其周边地区土壤和植物(霸王草)汞含量分布及污染的调查和研究,旨在了解土壤和霸王草中的汞污染状况以及汞在土壤-霸王草系统中的迁移转化规律,进而为汞污染防治与修复提供科学依据。本次研究共采集土壤样315件和植物样(霸王草)150件。全部土壤和植物样品采用MDS-2003F型压力自控密闭微波溶样系统消解,并用原子荧光测汞仪进行分析测定。结果表明,坑口片区土壤汞含量为1.362 1±1.227 6μg/g,拉莫片区土壤汞含量为0.742 8±0.717μg/g,周边地区土壤汞含量为0.346 4±0.031 3μg/g,分别为我国一些地区土壤汞自然含量(0.071μg/g)的19.18、10.46、4.88倍。土壤汞含量随远离矿区中部向东西两侧依次降低。植物汞含量分布与土壤汞含量分布基本相似。植物根汞、叶汞与土壤汞相关性为r=0.547和r=0.179,均大于临界值r=0.159(取信度α=5%),植物不同部分汞含量表现为根叶茎。上述特点表明土壤汞是植物汞的主要来源。本次采集工作中55%的土壤样汞含量超过了我国《土壤环境质量标准(GB15618-2008)》第二级标准的对应限值(汞≤0.35μg/g),坑口片区以及北部拉莫片区土壤汞污染较严重,污染范围为2km2。植物根汞对土壤汞的富集系数为3%,土壤汞形态分析显示土壤中的可吸收态汞含量低。植物茎/根和叶/根转运系数较高,为36.62%、65.91%,表明植物根部吸收的有效态汞较多地被转运到茎叶上。 相似文献
17.
大型炼锌厂周边土壤及蔬菜的汞污染评价及来源分析 总被引:1,自引:5,他引:1
采集某大型炼锌厂周边的耕种土壤及蔬菜样品,分析其汞含量,并采用单项污染指数法及相关标准对土壤和蔬菜的汞污染状况进行了评价.结果表明,炼锌厂周边的耕种土壤和蔬菜都受到了不同程度的汞污染.土壤样品汞的超标率为78%,其中污染最严重区域土壤中的汞浓度是背景点土壤汞浓度的29倍,已达到重度污染程度.所有蔬菜样品的汞含量超过无公害蔬菜重金属限量指标,最大超标64.5倍,平均超标25.4倍.85%的蔬菜样品叶片中汞含量明显高于根部汞含量,说明叶片中的汞主要来自于大气;蔬菜根部汞含量与土壤汞含量明显线性相关,说明根部的汞主要来自于土壤.炼锌厂汞排放对其周边土壤和蔬菜的汞污染均有显著的影响. 相似文献
18.
为了解目前国内仍在运行生产的原生汞生产企业各排污节点气态Hg排放现状以及对周围环境介质的影响,选择一家典型企业进行了现场监测研究. 结果表明:在研究企业汞矿坑口、中转漏斗、破碎、浮选、脱水等工艺节点的车间空气中ρ(气态Hg)较低,在(3.00±0.23)~(20.3±7.7)ng/m3之间;而在全尾砂充填、冶炼和冷凝等工艺节点的车间空气中ρ(气态Hg)相对较高,为(754±67)~(907±79)ng/m3. 冶炼废气中ρ(气态Hg)平均值为(295±32)μg/m3,ρ(颗粒态Hg)平均值为(65.9±3.8)μg/m3;燃煤锅炉废气中ρ(气态Hg)平均值为(123±40)μg/m3,未达到GB 30770—2014《锡、锑、汞工业污染物排放标准》限值(15 μg/m3)或GB 13271—2014《锅炉大气污染物排放标准》限值(50 μg/m3)的要求,其ρ(颗粒态Hg)平均值为(14.1±3.5)μg/m3,ρ(气态Hg)∶ρ(颗粒态Hg)约为7∶1. 研究企业2012年气态Hg排放总量为18.9 kg,释Hg因子为0.004 8%. 研究企业矿区内土壤w(总Hg)为6.44~444 mg/kg,平均值为(140±133)mg/kg;矿区外为1.96~104 mg/kg,平均值为(24.4±26.2)mg/kg. 地累积指数法评价结果表明,土壤受Hg污染影响程度为矿区内>矿区外东南和东北方向>矿区外西南和西北方向. 研究显示,我国汞矿开采、冶炼排放对厂界及周边土壤造成了明显影响,并且污染仍在持续,不容忽视. 相似文献
19.
贵州省燃煤中汞含量较高,在贵州省农村分散式燃煤的使用是个普遍现象。为了解煤在分散式燃烧过程中造成的汞排放及其对周边环境的影响,本研究选取江南煤都贵州省具有代表性的高汞含量煤产区,黔西南州兴仁市厂头村为研究区,对农户所用煤和燃烧过程中的炉渣、烟气以及周边农用地表层土壤样品中的汞含量进行了分析,同时监测了当地农户室内和室外空气汞浓度变化。结果表明,研究区农户煤中汞含量为0. 34±0. 18 mg/kg,炉渣中汞含量为0. 13±0. 10 mg/kg,烟气中汞含量为23±16μg/m~3。研究区的土壤中总汞(THg)和甲基汞(MeHg)的含量分别为0. 37±0. 08 mg/kg和0. 64±0. 35μg/kg,THg与MeHg之间呈显著正相关(r=0. 375,P0. 05)。土壤总汞浓度低于土壤环境质量标准总汞风险筛选值。地累积指数法风险评价结果显示,研究区土壤总汞和甲基汞污染指数分别为0. 18±0. 33和0. 15±0. 79,存在一定的汞污染风险。 相似文献