首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在特定时间特定地点利用溶蚀器PM2.5采样系统进行PM2.5采样前,应首先确定溶蚀器涂层溶液最适浓度.为确定在天津市冬季利用蜂窝状溶蚀器PM2.5采样系统采样的最优化条件,于2014年1月1日~2月24日,在南开大学理化楼楼顶进行蜂窝状溶蚀器涂层溶液最适浓度的条件实验.结果表明:在天津地区冬季, 蜂窝状溶蚀器的碳酸钠涂层溶液最适浓度为4%,柠檬酸涂层溶液最适浓度为5%; 环境空气中HCl气体对PM2.5中Cl-的质量浓度测定影响不大,而HNO3、SO2、NH3等酸/碱性气体对PM2.5中相对应离子的质量浓度测定影响较大.  相似文献   

2.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

3.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

4.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:31,自引:3,他引:31       下载免费PDF全文
 在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

5.
在连续30天实时采样监测基础上,对自贡市城区PM2.5浓度日变化规律及其与气象参数的关系进行了分析。结果表明,PM2.5浓度日变化规律显著,且与温度、湿度密切相关。  相似文献   

6.
近年来,我国面临着细颗粒物(PM2.5)污染形势依然严峻以及臭氧(O3)污染日益凸显的双重压力.为进一步准确预测郑州市大气PM2.5与O3浓度并探明气象因子的影响,本研究使用2018-2022年郑州市大气污染物和气象因子逐时数据,结合统计学单因素分析和机器学习LightGBM模型多因素分析,建立了一种基于长时间序列数据的PM2.5与O3浓度预测及气象因子影响分析的综合分析方法.结果表明:(1)训练后的LightGBM模型能够较好地预测PM2.5污染,准确率达80.8%;对O3污染预测的准确率为52.5%.(2)郑州市大气PM2.5浓度与气压呈正相关,与比湿和环境温度均呈负相关;大气O3 8 h滑动平均浓度(O3-8 h浓度)与比湿和太阳辐射均呈正相关,与气压呈负相关.(3)有利的气象条件可能是2021年PM2.5年均浓度得到显...  相似文献   

7.
卫星遥感监测近地表细颗粒物多元回归方法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
对地基监测PM2.5和气象数据、MODISAOD卫星数据与NCEP FNL数据进行了处理分析,在与一元简单线性模型(模型1)进行对比的基础上,建立了适应于北京及其附近地区遥感监测近地面颗粒物(PM2.5)浓度的多元线性(模型2)和非线性(模型3)回归模型,并对模型进行了评价验证和遥感监测初步应用.结果表明:模型1,2,3分别能够解释PM2.5 32.5%,56.1%,62.7%的变异.反演的PM2.5浓度与站点监测值相关性分别为0.5488(R2=0.3012), 0.7449(R2=0.5549), 0.7431(R2=0.5523).对于站点监测PM2.5浓度63.1652μg/m3的均值,反演均方根误差RMSE分别为43.5562, 35.3321, 36.8450μg/m3.模型2和3中气象因子分别能够解释PM2.5 23.6%和12.6%的变异,说明了气象因子影响北京地区春季PM2.5-AOD关系的显著性.3种模型整体上都不同程度地存在着低值高估和高值低估的现象.  相似文献   

8.
杨伟  姜晓丽 《环境科学》2020,41(7):2995-3003
大气细颗粒物(PM2.5)是大气污染的重要组成成分,对其影响因素进度探讨具有重要的意义.但目前来看,多数的研究都聚焦于PM2.5与气象要素以及经济因素之间的关系,分析土地利用/覆被变化对PM2.5影响的研究相对较少,需要进一步的深入探讨.基于PM2.5空间分布数据及土地利用/覆被数据,对华北地区PM2.5变化特征及土地利用/覆被变化特征进行了系统分析,并利用地理加权回归、GIS空间分析等手段探讨了PM2.5变化与土地利用/覆被变化的响应关系,结果表明:①华北地区PM2.5浓度整体呈现东南高、西北低的空间格局,且18a均保持这一态势没有变化.时间上来看,在2006年达到污染最大值,之后虽有波动但一直居高不下.多数城市PM2.5浓度超标,整体环境污染形势严峻;②2000~2015年研究区土地利用类型/覆被以耕地、林地和草地为主,土地利用/覆被变化趋势主要表现为耕地的大量减少以及建设用地的持续增加,水域和未利用地面积略...  相似文献   

9.
上海冬季大气可吸入颗粒物的PIXE研究   总被引:18,自引:0,他引:18       下载免费PDF全文
为了研究上海冬季大气气溶胶颗粒物的化学特征,2001年12月~2002年1月使用TEOM1400型和2100型空气采样器,采集了市区和郊区19个有代表性采样点的PM2.5和PM10样品.使用质子激发X射线荧光分析方法(PIXE)测定颗粒物中近20种元素.结果发现,除了Ti和P等元素外,绝大多数元素的平均浓度是市区高于郊区.不同采样点的PM2.5/PM10范围为0.32~0.85,平均值为0.60±0.16.富集因子分析表明,上海大气可吸入颗粒物中的元素来源可以分为地壳元素和人为污染元素2类,S、As、Pb、Ni、Mn、Se等污染元素更趋于富集在直径小于2.5μm的细颗粒物中.  相似文献   

10.
细颗粒物(PM2.5)是目前环境相关研究的焦点对象之一,但如何客观有效的分析检测细颗粒物的金属组分,却缺乏相关国家标准规范支撑,对应研究亦鲜见报道.利用美国PE公司AAnalyst600型石墨炉原子吸收仪进行实验,研究几种不同混合基体改进剂在涂钼石墨管石墨炉原子吸收法测定细颗粒物(PM2.5)中锡的影响,发现利用硝酸钯-钼酸铵混合溶液为基体改进剂测定锡,方法的相对标准偏差为1.8%~4.5%,空白回收率为95.4%~97.8%,实际样品回收率为87.3%~98.5%.能够满足国家实验室分析质控要求.适用于细颗粒物中微量锡的测定.  相似文献   

11.
于2011年夏季(6月13日—7月2日)和冬季(11月30日—12月12日)在天津市某老年社区采集室内与老年人个体暴露PM2.5样品,分析二者的质量浓度及化学组分特征. 结果表明:夏、冬季室内ρ(PM2.5)分别为(138±103)和(173±136)μg/m3,二者差异显著(P<0.05);冬季室内ρ(PM2.5)、ρ(SO42-)和ρ(OC)显著高于夏季(P<0.05),初步推断是由于冬季燃煤取暖排放的大量颗粒物渗透进入室内所致;冬季室内源(如清扫和吸烟)对某些室内PM2.5组分(Al、Ca和Cd)的贡献较夏季显著. 对个体暴露与室内ρ(PM2.5)的相关性分析发现,二者在夏、冬季均显著相关(P<0.05). 在受试老年人时间活动模式基础上,采用COD(分歧系数)评估室内和个体暴露PM2.5化学组成的相似度,结果显示,室内与个体暴露PM2.5的COD在夏、冬季分别为0.34±0.10和0.37±0.12;冬季受试老年人在交通微环境所处时间较长,致使COD大于0.5的样本数所占比例较夏季高. 室内和老年人个体暴露PM2.5的ρ(OC)/ρ(EC)在夏、冬季均相近,说明二者的碳组分来源相似.   相似文献   

12.
冬季天津家庭室内空气颗粒物中邻苯二甲酸酯污染研究   总被引:3,自引:0,他引:3  
为了解我国家庭住宅室内空气颗粒物中邻苯二甲酸酯的污染程度,采集天津市13户家庭住宅冬季室内空气颗粒物PM10、PM2.5样品,采用GC/MS分析了DMP、DEP、DBP、BBP、DEHP、DOP等6种邻苯二甲酸酯.结果表明,室内空气颗粒物中DMP、DEP、DBP、BBP、DEHP这5种邻苯二甲酸酯在所有家庭均被检出,DOP在部分家庭检出.其中,DBP和DEHP为主要污染物.PM10和PM2.5中的6种物质占ΣPAEs颗粒相的比例规律相同,DBP和DEHP较大,分别为13.92%~91.50%、5.56%~85.08%和20.88%~93.95%、5.53%~75.90%;其次是DMP、DEP和BBP,DOP最小.不同粒径颗粒物上PAEs的分布显示,大多数PAEs易吸附在粒径较小的细粒子PM2.5上;结合调查问卷分析表明,冬季室内空气颗粒物上PAEs污染主要来源于室内,受房间的装修时间、装修特点、生活习惯、吸烟、烹饪、塑料制品使用量、室内清洁度和温度等因素的影响.  相似文献   

13.
2013年夏季嘉兴市一次光化学事件的观测分析   总被引:5,自引:7,他引:5  
沈利娟  李莉  吕升  张孝寒  吴博  章国骏  王翡 《环境科学》2014,35(5):1662-1670
为研究2013年8月5~11日嘉兴地区一次光化学事件形成的高浓度O3污染的变化特征及成因,对8月2~14日的主要污染气体(O3、NO2、NO、CO、SO2)、颗粒物(PM10、PM2.5)以及气象要素进行了观测分析.结果表明,嘉兴污染日的O3平均浓度是正常日的2.4倍,超标率多在29.0%以上,9日超标率高达45.8%,此次污染事件是高温下剧烈的光化学反应以及低湿低风速的稳定天气形势共同作用造成的.污染日和正常日的O3日变化均呈单峰分布,峰值出现在14:00左右,O3在污染日和正常日生成期的增长速率分别为50.3μg·(m3·h)-1和21.6μg·(m3·h)-1,在消耗期的下降速率分别为16.8μg·(m3·h)-1和23.4μg·(m3·h)-1,NO、NO2和CO在污染日的浓度分别是正常日的1.1、1.5和1.5倍,为光化学反应提供了有利的反应条件.污染日PM2.5浓度、PM10浓度、PM2.5/PM10的比值分别是正常日的2.5、2.3、1.1倍,污染日大气光化学反应异常活跃,更有利于细颗粒物的生成.  相似文献   

14.
夏晓圣  汪军红  宋伟东  程先富 《环境科学》2020,41(11):4832-4843
本研究利用PM2.5实测数据、MERRA-2 AOD与PM2.5再分析数据、气象因子和夜间灯光等数据,基于极限梯度提升、梯度提升、随机森林模型和Stacking模型融合技术提出了PM2.5浓度组合估算模型.在此基础上,从年、季、月尺度综合分析了2000~2019年中国PM2.5时空变化特征.结果表明:①组合模型实现了中国2000年以来PM2.5逐月浓度的可靠估算.②2000~2019年中国PM2.5年均浓度呈快速增加保持稳定显著下降的趋势,2007年和2014年分别为增加到稳定和稳定到下降的转折点.PM2.5月均浓度呈先降后升的"U"型趋势,最小值在7月,最大值在12月.③自然地理条件和人类活动奠定了中国PM2.5浓度年度空间格局变化的基础,气象条件的逐月变化决定了PM2.5浓度月度空间格局变化的主基调.④2000~2014年中国PM2.5浓度的标准差椭圆中心向东移动,2014~2018年椭圆中心向西移动.1~3月椭圆中心向西移动,4~9月椭圆中心先北移后南移,9~12月椭圆中心向东移动.  相似文献   

15.
以2013—2014年期间太原城区大气细颗粒物(PM_(2.5))为研究对象,定量分析了其中多环芳烃和硝基多环芳烃的浓度.结果显示,太原城区PM_(2.5)中16种多环芳烃和12种硝基多环芳烃的浓度分别为13.8~547和0.70~4.33 ng·m~(-3),硝基多环芳烃浓度低于多环芳烃浓度1~2个数量级.太原城区PM_(2.5)中多环芳烃最高值出现在冬季,最低值出现在夏季,冬季污染物浓度平均值高于夏季20倍,主要是由于北方采暖期间取暖用煤量的增加使得多环芳烃排放量大幅提高;与之不同的是,硝基多环芳烃浓度季节变化并不显著,冬季浓度均值与夏季差异小于5倍(除9-硝基蒽),反映出硝基多环芳烃生成主要与机动车尾气排放有关,其排放不受季节控制,这与实际情况是吻合的.此外,基于因子分析和化合物比值结果发现,太原城区大气PM_(2.5)中9-硝基蒽有来自周边地区木材燃烧的贡献.健康风险评价结果表明,必须对多环芳烃排放进行有效控制来降低人群在冬季大气中的暴露风险;对于硝基多环芳烃,其健康风险更要引起足够的重视.  相似文献   

16.
我国PM2.5浓度分阶段改善目标情景分析   总被引:2,自引:0,他引:2  
贺晋瑜  燕丽  王彦超  雷宇  汪旭颖 《环境科学》2019,40(5):2036-2042
分析了部分发达国家、地区PM_(2. 5)改善经验和我国74个重点城市2013~2016年PM_(2. 5)年均浓度的改善情况,得出不同浓度区间城市所能达到的PM_(2. 5)年均浓度降幅,并据此设计了我国城市PM_(2. 5)浓度改善情景,通过自下而上的计算方法,测算了全国城市、31个省(区、市)及重点区域的PM_(2. 5)浓度分阶段改善目标.结果表明,在2种情景下我国PM_(2. 5)年均浓度均将在2025年前实现达标,在2030年下降到30μg·m~(-3)以下;京津冀及周边地区在2030年实现达标;长三角地区在2025年达标,2030年区域内城市实现全面达标.北京、天津、河北、河南等省(市)基准年PM_(2. 5)年均浓度高,在2030年实现达标的压力较大;在重点区域强化情景下,京津冀及周边地区2030年仍有接近40%的城市PM_(2. 5)浓度超标,应持续加大重污染地区PM_(2. 5)污染防治工作的力度,以推进PM_(2. 5)浓度目标的实现.  相似文献   

17.
为探究典型“组群式”城市——淄博市夏季大气颗粒物中水溶性离子化学特征及来源,于2016年8月对淄博市6个城市点(桓台、张店、临淄、淄川、博山、周村)、2个郊区点(沂源、高青)及1个清洁对照点(鲁山)同步进行PM2.5和PM10采样,分析了大气颗粒物质量浓度及9种水溶性离子的空间分布特征,并利用主成分分析方法探讨了PM2.5和PM10中水溶性离子的主要来源.结果表明:①淄博夏季各点位(清洁对照点除外)PM2.5和PM10质量浓度日均值范围分别为57.2~112和77.4~163 μg/m3,空间分布特征表现为城市点>郊区点>清洁对照点;各点位PM2.5/PM10(质量浓度之比)在0.61~0.80之间,表明淄博夏季大气颗粒物污染以PM2.5为主.②水溶性离子在PM2.5和PM10中占比分别为53.3%和48.5%,其中二次无机离子分别占总离子浓度的91.4%和83.7%,表明大气颗粒物主要以二次离子为主,并且主要富集在PM2.5中;PM2.5中∑阴离子/∑阳离子(摩尔浓度之比)为1.07,PM10中该比值为0.87,说明PM2.5接近中性,而PM10呈弱碱性.③淄博夏季各点位离子来源具有一定的空间差异性,城市点、郊区点与清洁对照点间的CD(分歧系数)均高于0.2,而城市点间CD值低于0.2,说明城市点位间的水溶性离子的化学性质较为相似.④主成分分析表明,淄博夏季大气PM2.5中的水溶性离子可能主要来源于工业源、生物质锅炉、燃煤、二次源、道路尘及建筑尘,而PM10中的离子主要来源于道路尘、建筑尘、海盐及二次源.研究显示,淄博市颗粒物污染严重,具有明显的空间分布特征,水溶性离子来源复杂,应采取分区、多源控制的污染防治对策.   相似文献   

18.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

19.
研究PM2.5中NO-3、NO-2、NH+4及其气态前体物HNO3、HNO2、NH3的浓度特征和气-粒平衡关系,对深入认识PM2.5的来源及控制因素具有重要意义.因此,本文利用2012年6—7月在青岛采集的denuder和PM2.5大气样品,分析了其中气态和颗粒态氮组分的浓度.结果发现,青岛大气中HNO3、HNO2和NH3浓度分别为(0.80±0.79)μg·m-3、(0.49±0.59)μg·m-3和(4.71±4.03)μg·m-3,PM2.5中NO-3、NO-2和NH+4的浓度分别为(7.50±9.00)μg·m-3、(0.07±0.02)μg·m-3和(8.23±5.57)μg·m-3.HNO3气体浓度的昼夜变化具有统计意义上的显著差异,白天平均为1.16μg·m-3,高于夜晚的0.44μg·m-3,但其他氮组分无显著昼夜差异.观测期间,青岛大气为富氨环境,PM2.5中NH+4主要以(NH4)2SO4的形式存在,NO-3生成主要受HNO3的限制.利用ISORROPIA II热力学平衡模型探讨了青岛PM2.5中氮组分的控制因子,通过敏感性实验发现,颗粒态NO-3和NH+4分别对总HNO3(TN)和总H2SO4(TS)的变化响应敏感,而对总NH3(TA)的变化响应不敏感,这暗示了减少大气中TN和TS而不是TA对降低青岛PM2.5浓度更有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号