首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

2.
A large number of studies on the reclamation of mine soils focused on the problem caused by metals and did not explore in depth the issue of nutrients and vegetation after the application of organic materials. The aim of this study was to compare the effect of two treatments made of wastes and vegetated with Brassica juncea L. on the fertility of a settling pond mine soil. The first treatment was compost, biochar, and B. juncea (SCBP) and the second treatment was technosol, biochar, and B. juncea (STBP). This study evaluated the effect of the treatments on the soil nutrient concentrations and fertility conditions in the soil amendment mixtures, after 11 months of greenhouse experiment. Total carbon and nitrogen concentrations were higher in treatment SCBP than in treatment STBP after 7 months but, after 11 months, carbon concentration was higher in STBP. The used technosol could have forms of carbon more stable than compost, which could be released slower than in the compost-amended soils. Both compost and technosol mixed with biochar also increased the concentration of calcium, potassium, magnesium, and sodium in exchangeable form in the mine soil.  相似文献   

3.
Revegetation and ecological restoration of a Mn mineland are important concerns in southern China. To determine the major constraints for revegetation and select suitable plants for phytorestoration, pedological and botanical characteristics of a Mn mine in Guangxi, southern China were investigated. All the soils were characterized by low pH and low nitrogen and phosphorus levels except for the control soil, suggesting that soil acidity and poor nutrition were disadvantageous to plant growth. In general, the studied mine soils had normal organic matter (OM) and cation exchange capacity (CEC). However, OM (8.9 g/kg) and CEC (7.15 cmol/kg) were very low in the soils from tailing dumps. The sandy texture and nutrient deficiency made it difficult to establish vegetation on tailing dumps. Mn and Cd concentrations in all soils and Cr and Zn concentrations in three soils exceeded the pollution threshold. Soil Mn and Cd were above phytotoxic levels, indicating that they were considered to be the major constraints for phytorestoration. A botanical survey of the mineland showed that 13 plant species grew on the mineland without obvious toxicity symptoms. High Mn and Cd concentrations have been found in the aerial parts of Polygonum pubescens, Celosia argentea, Camellia oleifera, and Solanum nigrum, which would be interesting for soil phytoremediation. Miscanthus floridulus, Erigeron acer, Eleusina indica, and Kummerowia striata showed high resistance to the heavy metal and harsh condition of the soils. These species could be well suited to restore local degraded land in a phytostabilization strategy.  相似文献   

4.
An important goal of ecological rehabilitation is to accelerate natural successional processes to increase biological productivity, soil fertility and biotic control over biogeochemical fluxes within the recovering ecosystems. A new approach called Microbe Assisted Green Technology (MAGT) is an integrated biotechnological approach developed at National Environmental Engineering Research Institute (NEERI) through exhaustive laboratory as well as field studies and serve as a model for land reclamation and development of lush green vegetation on mine overburdens. One year old seedlings of native tree species were planted on 6.3 ha area of manganese mine overburden at Gumgaon under Manganese Ore India Ltd., Maharashtra, India. Continuous efforts resulted in nutrient rich soil with high N, P, K and organic carbon; well developed biodiversity, including bacteria, fungi, higher plants (more than 350 species) and different classes of animals. Planted trees accumulated 698 t ha( - 1) above ground biomass and 143 t ha( - 1) below ground mass. This was achieved in 18 years by MAGT, which otherwise takes hundreds of years.  相似文献   

5.
Efficacious botanical derivatives can provide an alternative to synthetic pesticides for organic farming systems. However, there is lack of information regarding the side effects of organic pesticides on key soil ecological processes. In this study, we investigated the effects of aqueous extracts from Urginea maritima and Euphorbia myrsinites exhibiting translaminar and systemic activity against pests on microbial biomass and enzymatic activities in soil. Two grams of plant material was extracted with 100 ml of water and then diluted 1:100, 2:100, and 4:100 with distilled water. Diluted plant extracts were applied around hypocotyl of tomato by soil drench. The effect of both plant extracts on microbial biomass C, amount of total N and organic C, and enzymatic activity in soil was significant. After the last application, the highest microbial biomass C was determined in the lowest U. maritima concentration (U 1:100). Soils treated with the highest concentration of U. maritima (U 4:100) had always lower SMBC content than control soil. All concentrations of E. myrsinites decreased microbial biomass C by 18% to 27% compared to the control. Total nitrogen and organic carbon decreased in soils without (control) and with treated U. maritima extract from first application to last application. Phosphatase, urease, and β-glucosidase activities were monitored in plant extract-treated soils. Except U. maritima 1:100 treatments of second and fourth applications, the other treatments of plant extracts negatively affected enzymatic activity in soil. U. maritima and E. myrsinites plant extracts exhibited different effects on soil microbial biomass and activity, probably because of their different chemical contents.  相似文献   

6.
Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh < 200 mV), with a neutral pH and low concentration in toxic metals; nevertheless, they varied widely in the soil and its quality-defining parameters (e.g., clay contents, total organic carbon, Fe, Al, toxic trace metals). It is noteworthy that the mangroves presented a low FePyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.  相似文献   

7.
Previous studies have shown that the application of soil amendments is efficient in reducing acidity and heavy metal bioavailability in mine soils. However, it remains a challenge for environmentalists to predict accurately and control economically the re-acidification in re-vegetated mine soils. In this study, net acid generation (NAG) test and bioassay technique were employed to assess the effectiveness of the amendments [including lime, N-P-K (nitrogen, phosphorous and potassium) fertilizer, phosphate and river sediment] on re-acidification and heavy metal immobilization in an extremely acid (pH < 3) mine soil. Our results suggested that NAG test was a rapid and accurate approach to assess the effectiveness of the amendments on re-acidification potential of the mine soil. Interestingly, it was found that phosphate and river sediment played quite specific roles in preventing the re-acidification in the mine soil. In addition, the results also indicated that the addition of 25 t ha(-1) lime combined with river sediment (30%) might be an economical method to successfully control the acidification and re-acidification in the extremely acid mine soil, allowing the re-establishment of the plants. Collectively, our results implied that the combined use of NAG test and bioassay assessment was effective in evaluating a reclamation strategy for extremely acidic mine soils.  相似文献   

8.
In this semi-arid area, many studies focused on the two-phase vegetation pattern were carried out to explore a changing vegetation trajectory on degraded land. However, this study conducted an analysis of a two-phase vegetation pattern and explored the successional vegetation trajectories in a positive succession without disturbance. In this work, 60 randomly distributed plots (1?×?1 m) were invested on four abandoned land areas (4-, 12-, 22-, and 50-year abandoned land) to determine attributes of vegetation, and soil physical and nutritional properties. It was found that vegetation distribution development went from homogeneous on 4-year abandoned land to heterogeneous on 50-year abandoned land, with a positive succession. Meanwhile, there was a significant difference in soil physical and nutritional properties for the inside and outside of vegetation patches. Vegetation patches can supply better soil physical and nutritional properties for vegetation than bare patches along the abandoned time. Vegetation diversity changes without a regular trend which may be due to the effect of environment and interspecies competition. This work picked up the slack for vegetation patterns succession research and provided a quantitative analysis approach.  相似文献   

9.
This study provides earthworm population data obtained from localities with a substantial anthropogenic impact spoils. The spoil heaps were reclaimed at the end of an opencast brown coal mining period. We studied spoils reclaimed by the two most commonly used reclamation processes: forestry and agricultural. The results show the significance of the locality age and the utilized reclamation process and treatment and their effect on earthworm communities. Our data indicate that apart from soil physical and chemical properties, the reclamation process itself may also induce viability and distribution of earthworm communities. Under standardized soil properties, the changes in earthworm populations during the succession were larger within the agricultural reclamation process as opposed to the forestry reclamation process for earthworm ecological groups and individual species.  相似文献   

10.
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin’s instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.  相似文献   

11.
The aim of this study was to investigate the spatial distribution of heavy metal in soil and evaluate the dissolution of metal from soil to ponded-surface water, leaching through soil profiles and metal uptake in grass as related to different land-use practices. The data provided a scientific basis for best-management practices for land use in Khli Ti watershed. The watershed has a Pb-contamination problem from the previous operation of a Pb-ore concentrator and abandoned Zn–Pb mine. Sampling sites were selected from a land-use map, with land-use types falling into the following four categories: forest, agricultural land, residential area and road. Soil, ponded-surface water, grass samples and soil profiles were collected. The study related soil characteristics from different land-use practices and locations with observed metal concentrations in ponded-surface water and soil. High enrichment factors of Pb and As in soil were found. Partitioning coefficient, Kd values were in the order: Cr > Pb > Ni > Cu > Cd > Zn. Soil disturbance from land-use activities including tillage and traffic increased leaching of trace metal from soils. Pb in soil was significantly taken up by grass even though the Transfer Factor, TF values were rather low. Agricultural activities in the watershed must be limited. Moreover, land encroachments in the upper and middle part of the watershed which have high potential of Pb must be strictly controlled in order to reduce the Pb contamination from non-point sources.  相似文献   

12.
Reclaimed salt marshes are fragile environments where water salinization and accumulation of heavy metals can easily occur. This type of environment constitutes a large part of the Po River Delta (Italy), where intensive agricultural activities take place. Given the higher Ni background of Po River Delta soils and its water-soluble nature, the main aim of this contribution is to understand if reclamation can influence the Ni behavior over time. In this study, we investigated the geochemical features of 40 soils sampled in two different localities from the Po River Delta with different reclamation ages. Samples of salt marsh soils reclaimed in 1964 were taken from Valle del Mezzano while soils reclaimed in 1872 were taken nearby Codigoro town. Batch solubility tests and consecutive determination of Ni in pore-water were compared to bulk physicochemical compositions of soils. Bulk Ni content of the studied soils is naturally high, since these soils originated from Po River sediments derived from the erosion of ultramafic rocks. Moreover, it seems that Ni concentration increases during soil evolution, being probably related to the degradation of serpentine. Instead, the water-soluble Ni measured in the leaching tests is greater in soils recently reclaimed compared to the oldest soils. Soil properties of two soil profiles from a reclaimed wetland area were examined to determine soil evolution over one century. Following reclamation, pedogenic processes of the superficial horizons resulted in organic matter mineralization, pH buffer, and a decrease of Ni water solubility from recently to evolved reclaimed soil.  相似文献   

13.
A main objective of restoration and afforestation at post-mining sites is establishing a long-term sustainable ecosystem which depends on adaptations of tree species and which in turn depends on the soil nutrient flux. The nutrient concentration (nitrogen (N), P, K, Ca, Mg, and sulfur (S)) of Scots pine needles was investigated in reclaimed mine soils (RMS) located at the following post-mining sites: a sand mine pit, spoil heap from a lignite mine, spoil heap from a S mine, and a carbonaceous spoil heap from an underground coal mine. The control plots were arranged on natural forest sites adjacent to the post-mining sites. A higher level of foliar nutrients was noted in the carbonaceous RMS, while lower levels were found in RMS on the spoil heap following lignite mining. The characteristics of the substrate were found to exert greater effect than mineral fertilization (performed at the onset of reclamation) on the tree stand characteristics, needle length and foliar nutrient concentration. While the soils and trees were most deficient in N, negative symptoms have not been noted to this date in tree stands at reclaimed mine sites. Trophic ratings were recommended based on statistical correlations and groupings between N and P contents in needles and needles length (mean length of 300 needles) while nutrient ratings were recommended from statistical differences and groupings of the RMS substrates.  相似文献   

14.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

15.
Whether to use artificial restoration or to allow natural recovery of degraded land has been an important topic in restoration ecology because of the need to determine the most appropriate way to restore degraded lands that have suffered from serious soil erosion. To identify the threshold between a need for artificial restoration and the possibility of natural recovery, we analyzed the vegetation cover, soil fertility parameters, erosion modulus, and runoff coefficient in 32 plots with different vegetation covers in China’s Fujian province from 1999 to 2009. In our study, 20 % vegetation cover appeared to be the threshold between natural recovery and artificial restoration. When vegetation cover dropped below 20 %, it was difficult to stabilize the original ecological structure and functions based on natural recovery mechanisms, and artificial restoration was needed. By monitoring sites to detect when vegetation cover is approaching this threshold, local managers could determine whether natural or assisted recovery represents the most appropriate strategy for ecological restoration.  相似文献   

16.
The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes.  相似文献   

17.
Ecological risk assessment of open coal mine area   总被引:2,自引:0,他引:2  
The coal mine areas in China have the serious conflicts between resources exploitation and ecology safety, therefore the coal mine ecological risk assessment is an important problem which relates to the sustainability of coal mines to regions and the whole country. In this study, open coal mine area serves as researching object, heavy metals, soil erosion and coast are screened out as risk resources, soil wireworm as the receiver of heavy metals risk, biotope ecosystem as the receiver of soil erosion and coast risk; ecological indexes are calculated with species background index, biological diversity index and natural degree index, ecological friability indexes are calculated with soil fertility index, plant coverage, plant species diversity index, soil wireworm index and maturity index, and the typical coal mine area assessment indexes system is established. In addition, the regional ecological risk assessment is conducted on the friable ecological system of Fuxin Haizhou open coal mine area. Examples are researched of Haizhou open coal mine, the coal mine risk distribution is established, and foundations are provided for the administrative decision-making.  相似文献   

18.
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2?=?0.14???0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.  相似文献   

19.
The aim of this study was to assess the seasonal development of the physicochemical (pH, organic C, organic N, extractable P, Ca2+, Mg2+) and biological soil properties (microbial biomass, activities of urease, dehydrogenase and alkaline phosphatase) of the topsoil of mine deposition sites that differed based on the material used exclusively for their creation: (a) marlstones, (b) red-grey formations (RGF), and (c) fly ash (FA), during the first year after their creation. Our hypothesis was that all deposition sites, regardless the material they consist of, present equal opportunities for the establishment of spontaneous vegetation. All macronutrients concentrations (P, Ca2+, and Mg2+) remained constant with time and were found to be higher in the FA sites. Organic C, organic N, all enzyme activities, and microbial biomass were higher in the RGF and marl depositions, with marl sites presenting the highest values. All values of biological variables, with the exception of alkaline phosphatase, increased with time. The alkaline environment along with the slow improvement in soil biological properties of the FA sites seemed to present the most unfavorable conditions for spontaneous vegetation growth. On the contrary, the other two spoil materials presented significant improvement in the initial stages of soil formation in terms of soil functionality.  相似文献   

20.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号