首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

2.
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.

Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking.  相似文献   


3.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

4.
Data from environmental-chamber studies and photochemical box-model simulations were used to evaluate and revise a method for developing a qualitative understanding of the sensitivity of ozone formation at a particular time and place to changes in concentrations of volatile organic compounds (VOC) and oxides of nitrogen (NOx). The revised method requires measurements of ozone, NO, and either NOx or NOy. The sensitivities of the method to biases in measurements were evaluated. The method potentially can be used for qualitative assessment of VOC versus NOx limitation, comparison with the predictions of grid-based photochemical air-quality models, and evaluation of trends over time in the relative effectiveness of VOC versus NOx controls.  相似文献   

5.
This study examined the effects of varying future reductions in emissions of oxides of nitrogen (NOx) and volatile organic compounds (VOC) on the location and magnitude of peak ozone levels within California’s South Coast Air Basin (SoCAB or Basin). As ozone formation is currently VOC-limited in the Basin, model simulations with 2030 baseline emissions (?61% for NOx and ?32% for VOC from 2008) predict 10–20% higher peak ozone levels (i.e., NOx disbenefit) in the western and central SoCAB compared with the 2008 base simulation. With additional NOx reductions of 50% beyond the 2030 baseline emissions (?81% from 2008), the predicted ozone levels are reduced by about 15% in the eastern SoCAB but remain comparable to 2008 levels in the western and central Basin. The Basin maximum ozone site shifts westward to more populated areas of the Basin and will result potentially in greater population-weighted exposure to ozone with even a relatively small shortfall in the required NOx reductions unless accompanied by additional VOC reductions beyond 2030 baseline levels. Once committed to a NOx-focused control strategy, NOx reductions exceeding 90% from 2008 levels will be necessary to attain the ozone National Ambient Air Quality Standards (NAAQS). The findings from this study and other recent work that the current VOC emission estimates are underestimated by about 50% suggest that greater future VOC reductions will be necessary to reach the projected 2030 baseline emissions. Increasing the base year VOC emissions by a factor of 1.5 result in higher 2008 baseline ozone predictions, lower relative response factors, and about 20% lower projected design values. If correct, these findings have important implications for the total and optimum mix of VOC and NOx emission reductions that will be required to attain the ozone NAAQS in the SoCAB.

Implications: Results of this study indicate that ozone levels in the western and central SoCAB would remain the same or increase with even a relatively small shortfall in the projected NOx reductions under planned NOx-focused controls. This possibility, therefore, warrants a rigorous analysis of the costs and effects of varying reductions of VOC and NOx on the formation and combined health impacts of ozone and secondary particles. Given the nonlinearity of ozone formation, such analyses should include the implications of gradually increasing global background ozone concentrations and the Basin’s topography and meteorology on the practical limits of alternative emission control strategies.  相似文献   

6.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

7.
Solvents are one of the most abundant sources of anthropogenic VOCs in the atmosphere, and can comprise a large number of organic compounds having different impacts on the rate and amount of ozone formation. A three-dimensional photochemical air quality model has been used to study the relative impacts of eight solvents, acetone, ethane, ethanol, isobutane, m-xylene, tertiary butyl acetate (TBA), para-chlorobenzotrifluoride (PCBTF) and benzotrifluoride (BTF) in three very different domains: Los Angeles, an urban area with high ozone and NOx levels; the Swiss Plateau, a more regional domain with much lower ozone and NOx levels: and Mexico City, a very high VOC urban area with high ozone levels. The results show that there can be a wide range of VOC reactivities under variable environmental conditions. Variability also exists between metrics, which are used to quantify reactivity. In most cases, halogenated aromatics were the least reactive and isobutane and m-xylene the most. The results here, finding that normalized reactivities are less variable than the absolute reactivity, support the applicability of relative VOC reactivity scales for use in air quality management.  相似文献   

8.
We evaluated the effect of a 20% reduction in the rate constant of the reaction of the hydroxyl radical with nitrogen dioxide to produce nitric acid (OH+NO2→HNO3) on model predictions of ozone mixing ratios ([O3]) and the effectiveness of reductions in emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx) for reducing [O3]. By comparing a model simulation with the new rate constant to a base case scenario, we found that the [O3] increase was between 2 and 6% for typical rural conditions and between 6 and 16% for typical urban conditions. The increases in [O3] were less than proportional to the reduction in the OH+NO2 rate constant because of negative feedbacks in the photochemical mechanism. Next, we used two different approaches to evaluate how the new OH+NO2 rate constant changed the effectiveness of reductions in emissions of VOC and NOx: first, we evaluated the effect on [O3] sensitivity to small changes in emissions of VOC (d[O3]/dEVOC) and NOx (d[O3]/dENOx); and secondly, we used the empirical kinetic modeling approach to evaluate the effect on the level of emissions reduction necessary to reduce [O3] to a specified level. Both methods showed that reducing the OH+NO2 rate constant caused control strategies for VOC to become less effective relative to NOx control strategies. We found, however, that d[O3]/dEVOC and d[O3]/dENOx did not quantitatively predict the magnitude of the change in the control strategy because the [O3] response was nonlinear with respect to the size of the emissions reduction. We conclude that model sensitivity analyses calculated using small emissions changes do not accurately characterize the effect of uncertainty in model inputs (in this case, the OH+NO2 rate constant) on O3 attainment strategies. Instead, the effects of changes in model inputs should be studied using large changes in precursor emissions to approximate realistic attainment scenarios.  相似文献   

9.
Ambient aerometric data were used to predict whether ozone formation at specific times and locations in central California was limited by the availability of volatile organic compounds (VOC) or oxides of nitrogen (NOx). The predictions were compared with differences between mean weekday and weekend peak ozone values. The comparison with weekend and weekday ozone levels provided a means for empirically investigating the effects of VOC and NOx reductions on ozone formation, because the relative proportions and levels of ozone precursor species were significantly different on weekends than on weekdays. Weekend NOx levels averaged 27 percent lower than weekday levels at the time of the peak ozone hour. Daytime weekend levels of VOC species were also consistently lower than weekday values throughout the region, though the differences between weekends and weekdays were not always statistically significant (p<0.05). Site-to-site differences between weekend and weekday mean peak hourly ozone were related to whether ozone formation was VOC- or NOx-limited.  相似文献   

10.
The threshold values of indicator species and ratios delineating the transition between NOx and VOC sensitivity of ozone formation are assumed to be universal by various investigators. However, our previous studies suggested that threshold values might vary according to the locations and conditions. In this study, threshold values derived from various model simulations at two different locations (the area of Switzerland by UAM Model and San Joaquin Valley of Central California by SAQM Model) are examined using a new approach for defining NOx and VOC sensitive regimes. Possible definitions for the distinction of NOx and VOC sensitive ozone production regimes are given. The dependence of the threshold values for indicators and indicator ratios such as NOy, O3/NOz, HCHO/NOy, and H2O2/HNO3 on the definition of NOx and VOC sensitivity is discussed. Then the variations of threshold values under low emission conditions and in two different days are examined in both areas to check whether the models respond consistently to changes in environmental conditions. In both cases, threshold values are shifted similarly when emissions are reduced. Changes in the wind fields and aging of the photochemical oxidants seem to cause the day-to-day variation of the threshold values. O3/NOz and HCHO/NOy indicators are predicted to be unsatisfactory to separate the NOx and VOC sensitive regimes. Although NOy and H2O2/HNO3 provide a good separation of the two regimes, threshold values are affected by changes in the environmental conditions studied in this work.  相似文献   

11.
A reduced mechanism to describe the formation of ozone from VOC oxidation has been developed, using the master chemical mechanism (MCM v2) as a reference benchmark. The ‘common representative intermediates’ (CRI) mechanism treats the degradation of methane and 120 VOC using ca. 570 reactions of ca. 250 species (i.e. the emitted VOC plus an average of about one additional species per VOC). It thus contains only ca. 5% of the number of reactions and ca. 7% of the number of chemical species in MCM v2, providing a computationally economical alternative. The CRI mechanism contains a series of generic intermediate radicals and products, which mediate the breakdown of larger VOC into smaller fragments (e.g., formaldehyde), the chemistry of which is treated explicitly. A key assumption in the mechanism construction methodology is that the potential for ozone formation from a given VOC is related to the number of reactive (i.e., C–C and C–H) bonds it contains, and it is this quantity which forms the basis of the generic intermediate groupings. Following a small degree of optimisation, the CRI mechanism is shown to generate levels of ozone, OH, peroxy radicals, NO and NO2 which are in excellent agreement with those calculated using MCM v2, in simulations using a photochemical trajectory model applied previously to simulation of episodic ozone formation. The same model is used to calculate photochemical ozone creation potentials for 63 alkanes, alkenes, carbonyls and alcohols using both mechanisms. Those determined with the CRI mechanism show a variation from compound to compound which is remarkably consistent with that calculated with the detailed chemistry in MCM v2. This suggests that the CRI mechanism construction methodology is able to capture both the salient features of the ozone formation process in general, and how this varies from one VOC to another.  相似文献   

12.
ABSTRACT

A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

13.
The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10–15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hohenpeissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, due to the eclipse, of about 2 ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2 h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NOx levels. Measured and modeled NO and NO2 concentrations at Hohenpeissenberg during the eclipse are also compared and indicate that the partitioning of NO and NO2 in NOx is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NOx sources.  相似文献   

14.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

15.
UV-B radiation is a driving factor for the chemistry of the polluted boundary layer. It is involved in the formation of radicals and consequently influences the formation and concentration of photo-oxidants. The 3-D mesoscale photochemical Metphomod model was employed to study the effect of changes in UV-B radiation on the concentration of photo-oxidants in the boundary layer over the Swiss Plateau. The model chemistry is based on the RACM mechanism and a two-stream approximation of radiative transfer. A summer (July) and a late winter (February) episode were simulated. All simulations were replicated with relatively large changes in the prescribed total ozone. The results for an increase in UV-B radiation show increases in PAN, HNO3, and ozone at noon in NOx-rich areas and a decrease in NOx. In NOx-poor areas in summer the effect on ozone is weak and has a negative sign, the main effect being an increase in H2O2. The spatial variability of NOx concentrations in the Swiss Plateau in the summer case is such that the effect of increased UV-B radiation on ozone is spatially variable. The effect on the ozone production rate in summer is strongest positive at the surface in the NOx-rich regions in the morning and strongest negative at some altitude above ground in NOx-poor regions in the early afternoon. In the winter episode, NOx-rich conditions are found almost everywhere on the Swiss Plateau, the effect of increased UV-B radiation on the ozone production rate is positive all day long and is largest at 300 m above ground at noon. In this case, in contrast to the summer case, the increase in ozone is carried over to the next day. The model results for ozone are in good agreement with results from a case study and a time series analysis of surface ozone measurements. We estimate the effect of day-to-day changes in total ozone on surface ozone peaks to range from 4 to 6 ppb at most.  相似文献   

16.
This study compares speciated model-predicted concentrations (i.e., mixing ratios) of volatile organic compounds (VOCs) with measurements from the Photochemical Assessment Monitoring Stations (PAMS) network at sites within the northeastern US during June–August of 2006. Measurements of total non-methane organic compounds (NMOC), ozone (O3), oxides of nitrogen (NOx) and reactive nitrogen species (NOy) are used for supporting analysis. The measured VOC species were grouped into the surrogate classes used by the Carbon Bond IV (CB4) chemical mechanism. It was found that the model typically over-predicted all the CB4 VOC species, except isoprene, which might be linked to overestimated emissions. Even with over-predictions in the CB4 VOC species, model performance for daily maximum O3 was typically within ±15%. Analysis at an urban site in NY, where both NMOC and NOx data were available, suggested that the reasonable ozone performance may be possibly due to compensating overestimated NOx concentrations, thus modulating the NMOC/NOx ratio to be in similar ranges as that of observations.  相似文献   

17.
Abstract

A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.  相似文献   

18.
This paper summarizes the results of a yearlong continuous measurements of gaseous pollutants, NO, NO2, NOx and O3 in the ambient air at Kathmandu valley. Measured concentration of the pollutants in study area is a function of time. NO, NO2 and O3 peak occurred in succession in presence of sunlight. At the time of maximum O3 concentration most of the NOx are utilized. The diurnal cycle of ground level ozone concentrations, revealed mid-day peak with lower nocturnal concentrations and inverse relationship exists between O3 and NOx, which are evidences of photochemical O3 formation. The observed ground level ozone during monsoon is slight lower than the pre-monsoon value. Further, lack of rainfall and higher temperature, solar radiation in the pre-monsoon have given rise to the gradual build up of ozone and it is lowest during winter. Ground level ozone concentrations measured during bandha (general strike) and weekend are 19% and 13% higher than those measured during weekdays. The most effective ozone abatement strategy for Kathmandu Valley may be control of NOx emissions.  相似文献   

19.
O3 concentrations were simulated over the Seoul metropolitan area in Korea using a simple semi-empirical reaction (SEGRS) model which consists of generic reaction set (GRS), photochemical reaction set, and the diagnostic wind field generation model. The aggregated VOC emission strength was empirically scaled by the comparison of the simulated slope of (O3–2NO–NO2) concentration as a function of cumulative actinic light flux against measurements on high surface ozone concentration days with the relatively weak easterly geostrophic winds at the 850 hPa level in summer when the effect of horizontal advection was fairly small. The results indicated that the spatial distribution patterns and temporal variations of spatially averaged ground-level ozone concentrations were quite well simulated compared with those of observations with the modified volatile organic compound (VOC) emission strength. The diurnal trend of the surface ozone concentration and the maximum concentration compared observations were also quite reasonably simulated. However, the maximum ozone concentration occurring time at Seoul lagged about 2 h and the ozone concentration in the suburban area was slightly overestimated in the afternoon due to the influx of high ozone concentration from the urban area. It was found that the SEGRS model could be effectively used to simulate or predict the ground-level ozone concentration reasonably well without heavy computational cost provided the emission of ozone precursors are given.  相似文献   

20.
Ground level ozone represents a significant air quality concern in Toronto, Canada, where the national 65 ppb 8-h standard is repeatedly exceeded during the summer. Here we present an analysis of nitrogen dioxide (NO2), ozone (O3), and volatile organic compound (VOC) data from federal and provincial governmental monitoring sites from 2000 to 2007. We show that summertime VOC reactivity and ambient concentrations of NO2 have decreased over this period of time by up to 40% across Toronto and the surrounding region. This has not resulted in significant summertime ozone reductions, and in some urban areas, it appears to be increasing. We discuss the competing effects of decreased ozone titration leading to an increase in O3, and decreased local ozone production, both caused by significant decreases in NOx concentrations. In addition, by using local meteorological data, we show that annual variability in summer ozone correlates strongly with maximum daily temperatures, and we explore the effect of atmospheric transport from the southwest which has a significant influence on early morning levels before local production begins. A mathematical model of instantaneous ozone production is presented which suggests that, given the observed decreases in NOx and VOC reactivity, we would not expect a significant change in local ozone production under photochemically relevant conditions. These results are discussed in the context of Toronto's recent commitment to cutting local smog-causing pollutants by 20% by 2012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号