首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a case study and comparative analysis of light nonaqueous phase liquid (LNAPL) transmissivity estimated using short‐ and long‐term test methods at an active petroleum refinery. LNAPL transmissivity (Tn) is a recognized direct indicator of LNAPL recoverability with increasing acceptance by regulatory agencies. Historical releases at a refinery resulted in widespread LNAPL accumulations across the site and, as such, a focused approach is being implemented to enhance recovery, shorten remedial timeframes, and prioritize areas for recovery. Groundwater pumping systems operate continuously to maintain hydraulic containment of impacts, along with 12 LNAPL recovery systems. Transmissivity has been established as a primary metric and management tool for LNAPL recovery at the refinery. In this case study, estimated transmissivity values from short‐term data (baildown testing) and long‐term data (LNAPL skimming operations) from the same locations are analyzed and compared. Overall results are presented with respect to variations in transmissivities between the short‐ and long‐term tests, significance of data collection and quality, and consideration factors affecting transmissivity including fluid properties, soil types, hydrogeology, saturation levels, tidal effects, migration rates, and receptor risks. Additionally, the application of transmissivity as a metric for monitoring progress toward LNAPL recovery endpoints as part of the LNAPL remediation program development is discussed. ©2015 Wiley Periodicals, Inc.  相似文献   

2.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
An aerobic fixed film biological treatment system has been successfully treating recovered groundwater/landfill leachate containing 1,4‐dioxane, tetrahydrofuran (THF), and other constituents since 2003. The most likely mode of 1,4‐dioxane biotransformation is via a cometabolic pathway in the presence of THF. Pilot studies conducted during the process development phase established a design basis process loading factor of 0.6 g 1,4‐dioxane and THF (as chemical oxygen demand [COD])/g total solids per day and proved the efficacy of the process. Full‐scale design includes the use of three parallel moving bed bioreactors with effluent recycle capability. Removal efficiencies in excess of 98 percent have been documented for 1,4‐dioxane. Evolving operational challenges are associated with recent trends in 1,4‐dioxane pretreatment discharge limitations in combination with ongoing process optimization and increased influent flow rate conditions associated with seasonal precipitation patterns. ©2016 Wiley Periodicals, Inc.  相似文献   

4.
The data mining/groundwater modeling methodology developed in McDade et al. (2013) was performed to determine if matrix diffusion is a plausible explanation for the lower‐concentration but persistent chlorinated solvent plumes in the groundwater‐bearing units at three different pump‐and‐treat systems. Capture‐zone maps were evaluated, and eight wells were identified that did not draw water from any of the historical source areas but captured water from the sides of the plume. Two groundwater models were applied to study the persistence of the plumes in the absence of contributions from the historical source zones. In the wells modeled, the observed mass discharge generally decreased by about one order of magnitude or less over 4 to 10 years of pumping, and 1.8 to 17 pore volumes were extracted. In five of the eight wells, the matrix diffusion model fit the data much better than the advection dispersion retardation model, indicating that matrix diffusion better explains the persistent plume. In the three other wells, confounding factors, such as a changing capture zone over time (caused by changes in pumping rates in adjacent extraction wells); potential interference from a high‐concentration unremediated source zone; and limited number of pore volumes removed made it difficult to confirm that matrix diffusion processes were active in these areas. Overall, the results from the five wells indicate that mass discharge rates from the pumping wells will continue to show a characteristic “long tail'' of mass removal from zones affected by active matrix diffusion processes. Future site management activities should include matrix diffusion processes in the conceptual site models for these three sites. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Many Superfund/hazardous chemical sites include waterbodies whose sediments contain hazardous chemicals. With the need to assess, rank, and remediate contaminated sediments at such sites, as well as in other waterways, regulators seek a simple, quantitative assessment approach that feeds easily into a decision‐making scheme. Numeric, co‐occurrence‐based “sediment quality guidelines” have emerged with the appearance of administrative simplicity. However, the very foundation of the co‐occurrence approach, based on the total concentrations of a chemical(s) in sediment, is technically invalid; its application relies on additional technically invalid presumptions. Use of technically invalid evaluation approaches renders any assessment of the significance of sediment contamination unreliable. This article reviews the technical roots and assumptions of the co‐occurrence‐based SQGs, the fundamental flaws in the rationale behind their development and application, and their misapplication for sediment quality evaluation. It also reviews concepts and approaches for the more reliable evaluation, ranking, and cleanup assessment of contaminated sediments at Superfund sites and elsewhere. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
During the production of thermonuclear fusion weapons at the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, between 1950 and 1963, the regional environment was extensively contaminated by volatile organic compounds (VOCs). Old Salvage Yard (OSY) on the western side of the site has been characterized as the major source of VOCs. In order to analyze the long‐term fate and transport of chlorinated VOC sources, an integrated surface and subsurface flow and transport model was developed for the Y‐12 NSC using the hydrodynamic and transport numerical package MIKE‐SHE. The model was developed considering the recent hydrogeological investigations on preferential flow and transport pathways at the site. The model was calibrated using the recorded groundwater flow and water‐quality data. The modeling simulated migration of the VOC plume for the next 100 years. Considering a range of hydrogeological and transport parameters, uncertainty of the results is discussed. The modeling predicted that tetrachloroethene, trichloroethene, and 1,2‐dichloroethene may exceed human health–related risk levels for the next 10 to 20 years. However, the contamination is unlikely to migrate to surface water under the current hydrogeological conditions and will decay below acceptable risk levels within approximately 20 years. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated. © 2013 Wiley Periodicals, Inc.*  相似文献   

8.
This article focuses on the results of a delineation of radioactive contaminants using expedited field characterization equipment at the Department of Energy's Savannah River Site in South Carolina. The objective of the study was to delineate a potential contamination area in the TNX Inner Swamp using cost‐effective field sampling equipment that would give results in a timely manner. The expedited field characterization equipment used was the In Situ Object Counting System (ISOCS) and the Model 935 Surveillance and Measurement System (SAM 935). The study involved an area of approximately 200 acres with 89 surveyed locations. Originally, the contaminant of concern was thorium‐232 because of the health risk to future on‐site workers. As the fieldwork progressed, there were no exceedances in thorium‐232 activities; however, there was one slight exceedance of uranium‐238. The delineation was established from using the ISOCS and SAM 935 sampling equipment in addition to soil sampling from the 0‐ to 1‐foot interval. There was a strong correlation in the analytical data from both the ISOCS and SAM 935 measurements. Thus, this type of sampling characterization is beneficial for determining the extent of contamination at hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

9.
Field‐scale estimation of gas permeability and subsequent computation of pore‐gas velocity profiles are critical elements of sound soil venting design. It has been our experience, however, in U.S. Environmental Protection Agency's (EPA's) technical assistance program, provided by the Office of Research and Development in support EPA regional offices, that many venting practitioners are unaware of equations and data interpretation methods appropriate for gas permeability estimation and pore‐gas velocity computation. To ameliorate this situation, we use data collected at a U.S. Coast Guard Station in Traverse City, Michigan, to demonstrate gets permeability estimation and pore‐gas velocity calculation for steady‐state, axisymmetric, two‐dimensional gas flow in a domain open to the atmosphere. For gas permeability estimation, we use random guesses constrained with decreasing intervals of radial and vertical permeabilityand analysis of root mean square errors to ensure attainment of a global versus local minimum. We demonstrate confidence in permeability estimation by providing plots of observed versus simulated pressure response. Finally, we illustrate how plots of pore‐gas velocity as a function of distance and flow rate can be helpful in venting design.  相似文献   

10.
Biofiltration of contaminants at concentrations below a certain level (sub‐low concentrations) is not as effective as at higher concentrations, which leads to incomplete removal of the contaminants, because of diffusive mass transfer of the contaminants inside the biofilm and insufficient carbon and energy sources to sustain biomass growth and maintenance. To overcome the limitation of diffusion, this article proposes the concept of convective flow biofilm in which contaminated air flows through the porous biofilm and thus carries the carbon and energy sources to the biomass. The innovative concept of convective flow biofilm was implemented in a convective flow biofilter (CFB), which was built from activated carbon‐coated ceramic monoliths by selectively blocking the channel openings. The CFB was tested for 11 weeks for the biofiltration of toluene at inlet concentrations below 100 ppmv. The CFB performed consistently better than the conventional diffusive flow biofilter (DFB), as indicated by the higher removal efficiencies and the higher CO2 productions. The CFB demonstrated up to 30 percent higher removal efficiency and an up to 100 percent higher elimination capacity than the DFB. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
An Accelerated Remediation Technologies (ART) In‐Well Technology pilot test was performed to evaluate the removal of chlorinated volatile organic compounds (VOCs) from groundwater. The ART In‐Well Technology was installed in one well located in the source area where dense nonaqueous‐phase liquid has been identified and VOC concentrations exceed 140,000 μg/L. Monitoring wells at the site were positioned between 10 and 170 feet from the ART test well. Overall, VOC concentrations from samples collected from the groundwater monitoring wells and in the vapors extracted for discharge from the ART treatment well were analyzed over the testing period. Monitoring results showed that concentrations of perchloroethylene were reduced in the closest monitoring well to nondetectable concentrations within 90 days. The cumulative removal of chlorinated VOCs from the ART test well over the six‐month pilot test period exceeded 9,500 pounds based on air monitoring data. The ART technology proved effective and cost‐efficient in reducing contaminant concentrations and removing a large mass of contamination from the subsurface in a short period of time. The radius of influence of the ART technology at the site was estimated to range between 65 and 170 feet. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
The MicroBlower Sustainable Soil Vapor Extraction System is a cost‐effective device specifically designed for remediation of organic compounds in the vadose zone. The system is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction to natural attenuation. It can also be a better choice for remediating small source zones that are often found in “tight zones” that are controlled by diffusion rate. The MicroBlower was developed by the Savannah River National Laboratory at the US Department of Energy's Savannah River Site to address residual volatile organic compound (VOC) contamination after shutdown of active soil vapor extraction systems. In addition, the system has been deployed to control recalcitrant sources that are controlled by diffusion rates. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A fish‐consumption advisory is currently in effect in a seven‐mile stretch of the Grasse River in Massena, New York, due to elevated levels of PCBs in fish tissue. One remedial approach that is being evaluated to reduce the PCB levels in fish from the river is in situ capping. An in‐river pilot study was conducted in the summer of 2001 to assess the feasibility of capping PCB‐containing sediments of the river. The study consisted of the construction of a subaqueous cap in a seven‐acre portion of the river using various combinations of capping materials and placement techniques. Optimal results were achieved with a 1:1 sand/topsoil mix released from a clamshell bucket either just above or several feet below the water surface. A longer‐term monitoring program of the capped area commenced in 2002. Results of this monitoring indicated: 1) the in‐place cap has remained intact since installation; 2) no evidence of PCB migration into and through the cap; 3) groundwater advection through the cap is not an important PCB transport mechanism; and 4) macroinvertebrate colonization of the in‐place cap is continuing. Additional follow‐up monitoring in the spring of 2003 indicated that a significant portion of the cap and, in some cases, the underlying sediments had been disturbed in the period following the conclusion of the 2002 monitoring work. An analysis of river conditions in the spring of 2003 indicated that a significant ice jam had formed in the river directly over the capping pilot study area, and that the resulting increase in river velocities and turbulence in the area resulted in the movement of both cap materials and the underlying sediments. The pilot cap was not designed to address ice jam–related forces on the cap, as the occurrence of ice jams in this section of the river had not been known prior to the observations conducted in the spring of 2003. These findings will preclude implementation of the longer‐term monitoring program that had been envisioned for the pilot study. The data collected immediately after cap construction in 2001 and through the first year of monitoring in 2002 serve as the basis for the conclusions presented in this article. It should be recognized that, based on the observation made in the spring of 2003, some of these conclusions are no longer valid for the pilot study area.The occurrence of ice jams in the lower Grasse River and their importance on sediments and PCBs within the system are currently under investigation. © 2003 Wiley Periodicals, Inc.  相似文献   

14.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
17.
Investigations conducted at three inactive hazardous waste sites in New York State have confirmed the co‐presence of polychlorinated hiphenyls (PCBs) and polychlorinated terphenyls (PCTs) in soils, sediments, and biota. The PCTs at all three sites were positively identified as Aroclor 5432, with the most probable source being the hydraulic fluid Pydraul 312A utilized for high‐temperature applications. The identification of the lower‐chlorinated PCT formulations in environmental samples is problematical, since PCT Aroclors 5432 and 5442 are not chromatographically distinct from the higher‐chlorinated (PCB) Aroclors 1254, 1260, 1262, and 1268 using conventional gas chromatography–electron capture detection. Results from this study indicate that U.S. Environmental Protection Agency (USEPA) approved PCB methods routinely utilized by most commercial laboratories based on Florisil adsorption column chromatography cleanup are inadequate to produce valid chromatographic separation and quantitative results with soils, sediment, and biota samples containing both PCBs and PCTs. The presence of co‐eluting PCBs and PCTs precludes accurate quantitation due to significant differences in PCB/PCT electron capture detector response factors, and the potential for misidentification of PCT Aroclors as higher chlorinated PCB Aroclors. A method based on alumina column adsorption chromatography was used, allowing for the accurate identification and quantitation of PCB and PCT Aroclors. The results of this study suggest that the utilization of alumina adsorption column separation may have applicability and regulatory significance to other industrially contaminated sites which historically used Pydraul 312A. Inferences.  相似文献   

18.
Plant transpiration is a critical process that affects the water balance in phytoremediation plots. The desired effect is to remove contaminated water from the soils through the plant metabolism. Thus, the transpiration rate can be a major component in modeling the groundwater flow and solute transport for a phytoremediation project and ultimately can determine the time expected to achieve remedial goals. Two phytoremediation plots of black willows (Salix nigra) were planted during October 1996 over separate,shallow groundwater plumes at a site in southeastern Louisiana. Concentrations of less than 10 mg/l of the herbicide bentazon were present in the shallow groundwater. Field experiments were developed and performed during the 1998 and 1999 growing seasons to measure sap flow as an indicator of plant transpiration. The tree‐trunk heat balance method was used to measure sap flow. Sap flow was indexed to the cross‐sectional area of the stem, and the sum of the available stem area for each plot was used to calculate the monthly water use in each plot. Daily water use in the plots averaged between 6 to 13 l/day/m2 during the periods tested in 1998 and 1999. By applying growth‐rate observations with the daily water use, annual water use at tree plot maturity was estimated to be 3.6×106 l/year in Plot 1 and 11.39×106 l/year in Plot 2. Application of these data will allow groundwater modeling to be performed to measure the effectiveness of phytoremediation and to predict closure of remediation at the test site. © 2001 John Wiley & Sons, Inc.  相似文献   

19.
Sustainable remediation guidance, frameworks, and case studies have been published at an international level illustrating established sustainability assessment methodologies and successful implementation. Though the terminology and indicators evaluated may differ, one common theme among international organizations and regulatory bodies is more comprehensive and transparent methods are needed to evaluate the social sphere of sustainable remediation. Based on a literature review and stakeholder input, this paper focused on three main areas: (1) status quo of how the social element of sustainable remediation is assessed among various countries and organizations; (2) methodologies to quantitatively and qualitatively evaluate societal impacts; and (3) findings from this research, including challenges, obstacles, and a path forward. In conclusion, several existing social impact assessment techniques are readily available for use by the remediation community, including rating and scoring system evaluations, enhanced cost benefit analysis, surveys/interviews, social network analysis, and multicriteria decision analysis. In addition, a list of 10 main social indicator categories were developed: health and safety, economic stimulation, stakeholder collaboration, benefits community at large, alleviate undesirable community impacts, equality issues, value of ecosystem services and natural resources, risk‐based land management and remedial solutions, regional and global societal impacts, and contributions to other policies. Evaluation of the social element of remedial activities is not without challenges and knowledge gaps. Identification of obstacles and gaps during the project planning process is essential to defining sustainability objectives and choosing the appropriate tool and methodology to conduct an assessment. Challenges identified include meaningful stakeholder engagement, risk perception of stakeholders, and trade‐offs among the various triple bottom line dimensions. ©2015 Wiley Periodicals, Inc.  相似文献   

20.
This study investigates the potential for perchlorate biodegradation in the sediments of the Las Vegas Wash area in Henderson, Nevada. The continuous transport of perchlorate from a contaminated seepage to the Las Vegas Wash, Lake Mead, and the Colorado River has resulted in considerable deposition of perchlorate along the sediments of the Las Vegas Wash. The contaminated sediments act as a distributed source of perchlorate, making efforts to stop the flow of perchlorate to the Colorado River very challenging. In this study, perchlorate‐ reducing bacteria were enumerated and microcosm tests were performed to investigate the role of indigenous microorganisms and the limitations to natural perchlorate biodegradation in the contaminated sediments. The results of microcosm tests revealed that, despite the high number of perchloratereducing bacteria present, natural perchlorate in the area appears to be limited by (1) high salinity levels, the presence of nitrate, and the low perchlorate concentrations present in the sediments and (2) an insufficient carbon source. However, the potential for in situ bioremediation of the sediments along the Wash area is considered to be high due to the presence of significant numbers of perchlorate‐ reducing bacteria and to the ease in which an additional carbon source could be provided to sustain nitrate and perchlorate biodegradation. The economics of this process are expected to be very favorable; however, detailed cost estimates, pilot‐scale testing, and permit applications are required before this concept can be applied. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号