首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various techniques exist to estimate stream nitrate loads when measured concentration data are sparse. The inherent uncertainty associated with load estimation, however, makes tracking progress toward water quality goals more difficult. We used high‐frequency, in situ nitrate sensors strategically deployed across the agricultural state of Iowa to evaluate 2016 stream concentrations at 60 sites and loads at 35 sites. The generated data, collected at an average of 225 days per site, show daily average nitrate‐N yields ranging from 12 to 198 g/ha, with annual yields as high as 53 kg/ha from the intensely drained Des Moines Lobe. Thirteen of the sites that capture water from 82.5% of Iowa's area show statewide nitrate‐N loading in 2016 totaled 477 million kg, or 41% of the load delivered to the Mississippi–Atchafalaya River Basin (MARB). Considering the substantial private and public investment being made to reduce nitrate loading in many states within the MARB, networks of continuous, in situ measurement devices as described here can inform efforts to track year‐to‐year changes in nitrate load related to weather and conservation implementation. Nitrate and other data from the sensor network described in this study are made publicly available in real time through the Iowa Water Quality Information System.  相似文献   

2.
ABSTRACT: Effects of the 1993 flood on river water and sediment quality were investigated using historical data and data collected from the Illinois River and Upper Mississippi River in a post‐flood period. Overall the post‐flood results showed systematic reductions and individual changes in the water and sediment constituents. The reductions in sediment metals and nutrients were most obvious at the Keokuk and Lock and Dam 26 stations. By analyzing and comparing the physical changes to the changes in water and sediment constituents at each station, it was found that physical processes such as sediment entrainment and, more importantly, the removal of fine sediment to be the main causes for the reduced concentrations in sediment constituents. On the other hand, sediment redistribution and associated secondary contamination could have caused the emergence of several water and sediment constituents that were undetected before the flood.  相似文献   

3.
ABSTRACT Mass budgets for chloride were estimated from 1975-1978 for the Mississippi River from headwaters to near the mouth to determine the magnitudes of natural and anthropogenic sources. Annual chloride input from precipitation ranged from about 200 kg mi-2yr-1 at Royalton, Minnesota, to about 350 kg mi-2yr-1 at Vicksburg, Mississippi. Mass export ranged from about 900 kg mi-2yr-1 at Royalton to about 8000 kg mi-2yr-1 at Vicksburg. As much as 80 percent of the residual, the difference between input and export, probably is contributed by anthropogenic sources. In particular, semi-logarithmic scatterplots of monthly total discharge against chloride concentration show that, during early spring, chloride elevations in the Mississippi River and Ohio River are elevated, possibly because of flushing of road salt and leaching of chloride from the accumulated snowpack.  相似文献   

4.
The Ohio River Basin (ORB) is responsible for 35% of total nitrate loading to the Gulf of Mexico yet controls on nitrate timing require investigation. We used a set of submersible ultraviolet nitrate analyzers located at 13 stations across the ORB to examine nitrate loading and seasonality. Observed nitrate concentrations ranged from 0.3 to 2.8 mg L−1 N in the Ohio River's mainstem. The Ohio River experiences a greater than fivefold increase in annual nitrate load from the upper basin to the river's junction with the Mississippi River (74–415 Gg year−1). The nitrate load increase corresponds with the greater drainage area, a 50% increase in average annual nitrate concentration, and a shift in land cover across the drainage area from 5% cropland in the upper basin to 19% cropland at the Ohio River's junction with the Mississippi River. Time-series decomposition of nitrate concentration and nitrate load showed peaks centered in January and June for 85% of subbasin-year combinations and nitrate lows in summer and fall. Seasonal patterns of the terrestrial system, including winter dormancy, spring planting, and summer and fall growing-harvest seasons, are suggested to control nitrate timing in the Ohio River as opposed to controls by river discharge and internal cycling. The dormant season from December to March carries 51% of the ORB's nitrate load, and nitrate delivery is high across all subbasins analyzed, regardless of land cover. This season is characterized by soil nitrate leaching likely from mineralization of soil organic matter and release of legacy nitrogen. Nitrate experiences fast transit to the river owing to the ORB's mature karst geology in the south and tile drainage in the northwest. The planting season from April to June carries 26% of the ORB's nitrate and is a period of fertilizer delivery from upland corn and soybean agriculture to streams. The harvest season from July to November carries 22% of the ORB's nitrate and is a time of nitrate retention on the landscape. We discuss nutrient management in the ORB including fertilizer efficiency, cover crops, and nitrate retention using constructed measures.  相似文献   

5.
ABSTRACT: Nutrient data from all available sources for the lower Mississippi River were examined for potential differences among sampling agencies and geographic locations for the period between 1960 and 1998. Monthly means grouped by parameter, sampling location and agency, were calculated and compared as paired sets, excluding those months where data were not available for both sets. Some significant differences were found between various agencies collecting nutrient data on the river, as well as between various stretches of river, especially in the case of phosphorus nutrient data. Results were used to synthesize data sets from which a history of nutrient loading in the Mississippi River was determined. General trends in nitrate+nitrite, total Kjeldahl nitrogen, orthophosphate, total phosphorus and silica loads, as well as changes in nutrient proportions and the specific limiting nutrient (by month) are reported. This study provides a useful summary of contemporary and historical nutrient data that may assist in the evaluation of Mississippi River water quality and its potential effect on the Gulf of Mexico.  相似文献   

6.
Hypoxia in the Gulf of Mexico   总被引:1,自引:0,他引:1  
Seasonally severe and persistent hypoxia, or low dissolved oxygen concentration, occurs on the inner- to mid-Louisiana continental shelf to the west of the Mississippi River and Atchafalaya River deltas. The estimated areal extent of bottom dissolved oxygen concentration less than 2 mg L-1 during mid-summer surveys of 1993-2000 reached as high as 16,000 to 20,000 km2. The distribution for a similar mapping grid for 1985 to 1992 averaged 8000 to 9000 km2. Hypoxia occurs below the pycnocline from as early as late February through early October, but is most widespread, persistent, and severe in June, July, and August. Spatial and temporal variability in the distribution of hypoxia exists and is, at least partially, related to the amplitude and phasing of the Mississippi and Atchafalaya discharges and their nutrient flux. Mississippi River nutrient concentrations and loadings to the adjacent continental shelf have changed dramatically this century, with an acceleration of these changes since the 1950s to 1960s. An analysis of diatoms, foraminiferans, and carbon accumulation in the sedimentary record provides evidence of increased eutrophication and hypoxia in the Mississippi River delta bight coincident with changes in nitrogen loading.  相似文献   

7.
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents.  相似文献   

8.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

9.
ABSTRACT: The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row‐crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row‐crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.  相似文献   

10.
Sources of nitrate yields in the Mississippi River Basin   总被引:1,自引:0,他引:1  
Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.  相似文献   

11.
ABSTRACT: The impacts of regional groundwater quality and local agricultural activities on in-stream water quality in the Lower Truckee River, Nevada, were assessed through a detailed program of monitoring and computer simulation. An agricultural diversion and return-flow were monitored in great detail to determine mass loading rates of nutrients from agriculture in the area. Once characterized, the cumulative impacts of agricultural diversions and return-flows were evaluated using the Water Quality Assessment Program (WASP) to model nitrogen, phosphorus, periphyton, and dissolved oxygen. Monitoring showed that a significant proportion of the water diverted for agricultural purposes returned to the river as surface point return-flow (estimated at 13.9 percent $ 0.1 percent), and as groundwater diffuse return-flow (estimated at 27 percent $ 6 percent). Modeling efforts demonstrated the significant effect of assumed regional groundwater quality (nitrate) upon predicted periphyton growth and associated diel fluctuations of dissolved oxygen.  相似文献   

12.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

13.
ABSTRACT: Excessive nitrate‐nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28‐year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.  相似文献   

14.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   

15.
16.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

17.
ABSTRACT: Nitrate levels in the Ocklawaha River Basin in north central Florida were reviewed over a 50‐year period. Data were obtained from the literature, U.S. Environmental Protection Agency (USEPA) STOrage and RETrieval (STORET), and U.S. Geological Survey (USGS) databases. The study objective was to determine whether nitrate concentrations are increasing and if so, whether this increase is linked to land use changes. Increasing nitrate levels were seen at 5 of the 14 stations, while other stations showed no trend or a decreasing trend. Median nitrate concentrations in the Ocklawaha River increased from 0.07 mg‐N/L to 0.78 mg‐N/L at sites downstream from the Silver River. Throughout the Rodman Reservoir, median nitrate concentrations decreased from 0.48 mg‐N/L to 0.01 mg‐N/L and increased to 0.04 mg‐N/L after the Kirkpatrick Dam. Flow and concentration relationships were correlated for five stations. At four of the five stations nitrate concentrations decreased in response to increasing flow, likely the result of dilution with nitrate poor water. Changes in land use over a 20‐ year period (1970 to 1990) also were monitored. Sources of nitrate have been linked by isotopic analysis to organic and inorganic fertilizers, which appear to be related to increased urbanization and an increase in lawns that require nutrient fertilization.  相似文献   

18.
ABSTRACT: The 150-kilometer middle reach of the Snake River (middle Snake) in south-central Idaho receives large quantities of water from springs discharging along the north side of the river from the regional Snake River Plain aquifer. Water-quality samples collected from nine north-side springs in April 1994 indicated that springs in the upstream part of the reach had larger concentrations of dissolved solids, dissolved nitrate, total nitrogen, tritium, and heavy isotopes of hydrogen and oxygen than to springs in the downstream part of the reach. Because the spring chemistry varies in the reach, discharge from the springs resulted in a degradation in water quality in some parts of the middle Snake and improvements in water quality in other parts. Depending on the annual discharge in the Snake River, the contribution from the north-side springs represented 33 to 66 percent of the discharge, 32 to 57 percent of the dissolved solids, 26 to 50 percent of the total nitrogen, and 7 to 14 percent of the total phosphorus transported annually from the middle Snake. Synoptic sampling showed that the north-side springs contributed 84 percent of the discharge and 35, 40, and 10 percent of the dissolved solids, total nitrogen, and total phosphorus load, respectively, to the Snake River during the peak of the irrigation season in 1994.  相似文献   

19.
ABSTRACT: This paper considers the distribution of flood flows in the Upper Mississippi, Lower Missouri, and Illinois Rivers and their relationship to climatic indices. Global climate patterns including El Niño/Southern Oscillation, the Pacific Decadal Oscillation, and the North Atlantic Oscillation explained very little of the variations in flow peaks. However, large and statistically significant upward trends were found in many gauge records along the Upper Mississippi and Missouri Rivers: at Hermann on the Missouri River above the confluence with the Mississippi (p = 2 percent), at Hannibal on the Mississippi River (p < 0.1 percent), at Meredosia on the Illinois River (p = 0.7 percent), and at St. Louis on the Mississippi below the confluence of all three rivers (p = 1 percent). This challenges the traditional assumption that flood series are independent and identically distributed random variables and suggests that flood risk changes over time.  相似文献   

20.
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号