首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

2.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

3.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

4.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

5.
ABSTRACT: Few water budgets exist for specific types of wetlands such as peatlands, even though such information provides the basis from which to investigate linkages between wetlands and upland ecosystems. In this study, we first determined the water budget and then estimated nutrient loading from an upland farm field into a 1.5 ha, kettle-block peatland. The wetland contains highly anisotropic peat and has no distinct, active layer of groundwater flow. We estimated the depth of the active layer using Fick's law of diffusion and quantified groundwater flow using a chemical mass balance model. Evapotranspiration was determined using MORECS, a semi-physical model based on the Penman-Monteith approach. Precipitation and surface outflow were measured using physical means. Groundwater provided the major inflow, 84 percent (44,418 m3) in 1993 and 88 percent (68,311 m3) in 1994. Surface outflow represented 54 percent (28,763 m3) of total outflows in 1993 and 48 percent (37,078 m3) in 1994. A comparison of several published water budgets for wetlands and lakes showed that error estimates for hydrologic components in this study are well within the range of error estimates calculated in other studies. Groundwater inflow estimates and nutrient concentrations of three springs were used to estimate agricultural nutrient loading to the site. During the study period, nutrient loading into the peatland via groundwater discharge averaged 24.74 kg K ha-1, 1.83 kg total inorganic P had, and 21.81 kg NO3-N ha-1.  相似文献   

6.
ABSTRACT: This paper focuses on the development and testing of a mathematical model of an emergency ground water supply operated principally during periods of low streamflow. The process of ground water withdrawal and recharge is simulated taking account of streamflow, water demand, evapotranspiration, natural and artificial recharge and increased evapotranspiration due to artificial recharge, ground water pumpage, and streamflow contribution to pumped water. The model determines whether natural recharge is possible in less time than the return period of drought and also whether artificial recharge is needed. By simulating operation over a long period of time, the model can examine different droughts of short and long duration and can test the operating rules for ground water storage development in an area. Submodels analyze the components of the operating process including ground water flow into the stream, seepage losses, stream portion of well discharge due to induced infiltration and recharge from rainfall or water spreading. The model has been tested for areas in the humid northeastern United States.  相似文献   

7.
Direct ground water seepage measurements were made in Lake Washington, Florida, to determine the importance of seepage as a water and chloride source to the lake and upper St. Johns River. Over 200 seepage measurements were made in the lake and adjoining canals from July through December 1978. Results indicated that seepage into the shore areas of Lake Washington was an insignificant water source to the lake, representing 0.6 percent of the inputs, and was nearly balanced by ground water recharge in the midlake region. Drainage canals entering Lake Washington, however, exhibited high average seepage rates (17.7 L/m2-day), over eight times the lake average (2.01 L/M2-day). Discharge from the St. Johns River was the dominant factor in the water budget of Lake Washington and represented approximately 88 percent of the inputs during the study year. Although inputs from the drainage canals represented only 6.6 percent of the St. Johns River annual discharge, these canals represented 20.4 percent of the annual St. Johns River chloride loading and 62.1 percent of the river chloride loading during the five driest months of 1978. Evidence from this study indicates that rising levels of chloride in the river in recent years are largely attributable to ground water seepage in channelized areas, particularly in the headwaters. These chloride inputs assume greater importance during low water/low flow periods.  相似文献   

8.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

9.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   

10.
ABSTRACT: This paper presents the results of steady-state three-dimensional computer simulations to determine the hydrogeologic setting of formation water in the hydrocarbon producing formations of southwestern New York and northwestern Pennsylvania. Recharge areas for the regional ground water flow systems in the study area are the Valley Heads Moraine and Allegheny uplands; discharge areas are Lakes Erie and Ontario to the north and the northern margin of the Appalachian basin to the south. Simulated ground water flow in all model layers moves north from the ground water divide on the Valley Heads Moraine towards Lake Erie at a rate from 10?-6 to 10?-3 ft/day. South of the divide intermediate-scale and local-scale flow systems occur in the upper 4000 feet of the stratigraphic section and the directions of ground water flow diverge towards major rivers and other topographically low areas.  相似文献   

11.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

12.
ABSTRACT: The quantity, seasonality, and sources of flow were analyzed for two segments of Four Mile Branch, a small stream on the Coastal Plain of South Carolina using data obtained from USGS gauging stations. Flows in the “upstream segment,” a 12.6-km2 watershed comprising the head waters of Four Mile Branch, averaged 0.129 m3 s?1 and showed a distinctly seasonal pattern, with maximum flows in February and March and minimum flows in September and October. Inflow to the “downstream segment,” a 2.2-km2 watershed associated with the main channel, averaged 0.059 m3 s?1 and showed no seasonal patterns. Discharges per unit area of watershed were greater for the downstream segment, 0.83 m3 per year per m2 of land surface, than for the upstream segment, 0.32 m3 per year per m2. The differences in discharge rates and seasonalities between the two segments reflect differences in aquifers supplying the different segments. Analyses of Streamflow by hydrograph separation and Streamflow partitioning methods indicated that greater than 90 percent of the flows in the upstream and downstream segments were due to ground water-driven base flows.  相似文献   

13.
ABSTRACT: Ground water is intended to be administered in many western states as a flow or renewable resource. In Idaho, this administration is based on the appropriation doctrine of water rights. Two generalizations may be made concerning ground water. First, water artificially discharged from an aquifer system must deplete the total resource by that amount; water consumptively pumped from a well must be derived from either increased recharge, decreased discharge or a decrease of water in storage. Second, the annual rate of recharge to a ground-water system is often only a small percentage of the total resource in storage. Ground water may be divided into flow and stock portions. In those basins where the second generalization is true, most ground water may be classified as stock. However, only the flow portion of ground water may be developed if utilization of the resource is to be enjoyed over an infinite period. Data from the Raft River Basin in Idaho indicate that the flow and stock characteristics of ground water are time dependent. The resource exhibits the characteristics of both a renewable and nonrenewable resource. As a result, present administrative techniques do not provide for effective management of the resource.  相似文献   

14.
Soil moisture data collected using an automated data logging system were used to estimate ground water recharge at a crude oil spill research site near Bemidji, Minnesota. Three different soil moisture probes were tested in the laboratory as well as the field conditions of limited power supply and extreme weather typical of northern Minnesota: a self‐contained reflectometer probe, and two time domain reflectometry (TDR) probes, 30 and 50 cm long. Recharge was estimated using an unsaturated zone water balance method. Recharge estimates for 1999 using the laboratory calibrations were 13 to 30 percent greater than estimates based on the factory calibrations. Recharge indicated by the self‐contained probes was 170 percent to 210 percent greater than the estimates for the TDR probes regardless of calibration method. Results indicate that the anomalously large recharge estimates for the self‐contained probes are not the result of inaccurate measurements of volumetric moisture content, but result from the presence of crude oil, or borehole leakage. Of the probes tested, the 50 cm long TDR probe yielded recharge estimates that compared most favorably to estimates based on a method utilizing water table fluctuations. Recharge rates for this probe represented 24 to 27 percent of 1999 precipitation. Recharge based on the 30 cm long horizontal TDR probes was 29 to 37 percent of 1999 precipitation. By comparison, recharge based on the water table fluctuation method represented about 29 percent of precipitation.  相似文献   

15.
ABSTRACT: To quantify and model the natural ground water recharge process, six sites located in the midwest and eastern United States where previous water balance observations had been made were compared to computerized techniques to estimate: (1) base flow and (2) ground water recharge. Results from an existing automated digital filter technique for separating baseflow from daily streamflow records were compared to baseflow estimates made in the six water balance studies. Previous validation of automated baseflow separation techniques consisted only of comparisons with manual techniques. In this study, the automated digital filter technique was found to compare well with measured field estimates yielding a monthly coefficient of determination of 0.86. The recharge algorithm developed in this study is an automated derivation of the Rorabaugh hydrograph recession curve displacement method that utilizes daily streamflow. Comparison of annual recharge from field water balance measurements to those computed with the automated recession curve displacement method had coefficients of determination of 0.76 and predictive efficiencies of 71 percent. Monthly estimates showed more variation and are not advocated for use with this method. These techniques appear to be fast, reproducible methods for estimating baseflow and annual recharge and should be useful in regional modeling efforts and as a quick check on mass balance techniques for shallow water table aquifers.  相似文献   

16.
ABSTRACT: In areas of the Red River Valley that overlie permeable Paleozoic sediments, wetlands and salinization have developed where unregulated flowing wells discharge brackish water. Field data were collected to assess the fate of water and salt from a well 25 km northwest of Grand Forks. Drilled during the drought of the 1930s, discharge was used to replenish water in a small oxbow pond used by livestock. The unregulated well discharges about 56 m3/day, measured since 1993. This discharge exceeds ground water flow from the site, thereby forming a ground water mound with a maximum height of 1 m and a diameter of about 300 m. Most soil and underlying sediments near the well have a hydraulic conductivity of 0.3 m3/day. Flow net analysis suggests that less than 25 percent infiltrates, with the remaining water lost to surface flow and evapotranspiration (ET). Evapotranspiration and slow infiltration has led to increased salinization, with shallow soils exhibiting EC to 500 milliSiemens/m. The most pronounced soil salinization occurs along the margins of the oxbow pond and meander scars. Wetland vegetation with low diversity comprises three zones, with species associations similar to those of closed basin prairie potholes to the west.  相似文献   

17.
ABSTRACT. The occurrence of ground water in the lower North Platte Valley, Goshen County, Wyoming, was studied to determine safe yield within the alluvial aquifer under varying discharge and recharge conditions. The alluvium of the North Platte is extensively developed for irrigation purposes and the effects of large-scale pumpage are of major concern. Actual withdrawals are estimated to be 46,000 acre-feet. Should pumping reach potentially higher levels an overdraft is expected. Effect of ground water withdrawals are established from projections of the flow regime within the alluvial aquifer. A time dependent, numerical model was employed to predict aquifer response to increased withdrawals. The results suggest that more efficient use of surface waters and/or increased use of ground water will reduce the annual subsurface return flow to the North Platte River and its tributaries by an amount equal to the reduced ground water recharge increment. Alternatives are available for management of the lower North Platte alluvial aquifer. The preferred course is to correlate surface and subsurface water rights, in light of convenience, economics, and best means of storage for maximum utilization of the single water resource.  相似文献   

18.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

19.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

20.
ABSTRACT: The geochemistry and nature of the flow of ground water not only control the supply potential but constitute clues to the whole geology of an area. A study has been made of the largest available assemblage of data from 161 wells for the Island of Montreal collected by the Geological Survey of Canada in 1951–53. Data indicated that the system is generally subartesian, flowing from the principal topographically high areas towards the shores of the Island. As the probable use is about 13% of the estimated recharge of 140 million liters per day, most wells could be supplied by local recharge. The study has confirmed the predominance of calcium bicarbonate ground water from the carbonate sequence. The waters appeared to be saturated with respect to CaCO3 in all but 10 wells. The presence of other types of waters suggests the effects of the igneous intrusions of the area, the post-glacial marine submergence and the upward movement of waters from deep sources through fault and other structural zones. Confirmation of the significant variations in chemical composition in some neighboring wells indicated the future need for repetitive sampling from specific horizons for chemical and isotopic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号