首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Permeable reactive barriers made of zero‐valent iron (ZVI PRBs) have become a prominent remediation technology in addressing groundwater contamination by chlorinated solvents. Many ZVI PRBs have been installed across the United States, some as research projects, some at the pilot scale, and many at full scale. As a passive and in situ remediation technology, ZVI PRBs have many attractive features and advantages over other approaches to groundwater remediation. Ten ZVI PRBs installed in California were evaluated for their performance. Of those ten, three are discussed in greater detail to illustrate the complexities that arise when quantifying the performance of ZVI PRBs, and to provide comment on the national debate concerning the downgradient effects of source‐zone removal or treatment on plumes of contaminated groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Careful design studies and selection of an effective technique for the installation of permeable reactive barriers (PRBs) are important contributors to the overall success of zero‐valent iron PRBs. This article provides a case study summarizing the successful design and construction of a PRB installed at the former Carswell Air Force Base located in Fort Worth, Texas. Expedited site characterization using a cone penetrometer rig equipped with a mass spectrometer was employed to provide real‐time characterization and lithologic data. These data proved to be invaluable for the design of the PRB and allowed for the development of an accurate preconstruction cost estimate. Field data gained from the expedited water quality and geologic characterization along with aquifer testing and a bench‐scale treatability study provided a comprehensive basis for the design. The biopolymer slurry construction technique provided additional unanticipated benefits to the designed zero‐ valent iron treatment by promoting the development of anaerobic conditions favorable for microbial degradation of trichloroethene. Postconstruction monitoring data are discussed to illustrate the successful performance of the PRB. © 2005 Wiley Periodicals, Inc.  相似文献   

4.
Permeable reactive barriers (PRBs) have traditionally been constructed via trenching backfilled with granular, long‐lasting materials. Over the last decade, direct push injection PRBs with fine‐grained injectable reagents have gained popularity as a more cost‐efficient and less‐invasive approach compared to trenching. A direct push injection PRB was installed in 2005 to intercept a 2,500 feet (760 meter) long carbon tetrachloride (CT) groundwater plume at a site in Kansas. The PRB was constructed by injecting EHC® in situ chemical reduction reagent slurry into a line of direct push injection points. EHC is composed of slow‐release plant‐derived organic carbon plus microscale zero‐valent iron (ZVI) particles, specifically formulated for injection applications. This project was the first full‐scale application of EHC into a flow‐through reactive zone and provided valuable information about substrate longevity and PRB performance over time. Groundwater velocity at the site is high (1.8 feet per day) and sulfate‐rich (~120 milligrams per liter), potentially affecting the rate of substrate consumption and the PRB reactive life. CT removal rates peaked 16 months after PRB installation with >99% removal observed. Two years post‐installation removal rates decreased to approximately 95% and have since stabilized at that level for the 12 years of monitoring data available after injection. Geochemical data indicate that the organic carbon component of EHC was mostly consumed after 2 years; however, reducing conditions and a high degree of chloromethane treatment were maintained for several years after total organic carbon concentrations returned to background. Redox conditions are slowly reverting and have returned close to background conditions after 12 years, indicating that the PRB may be nearing the end of its reactive life. Direct measurements of iron have not been performed, but stoichiometric demand calculations suggest that the ZVI component of EHC may, in theory, last for up to 33 years. However, the ZVI component by itself would not be expected to support the level of treatment observed after the organic carbon substrate had been depleted. A longevity of up to 5 years was originally estimated for the EHC PRB based on the maximum expected longevity of the organic carbon substrate. While the organic carbon was consumed faster than expected, the PRB has continued to support a high degree of chloromethane treatment for a significantly longer time period of over 12 years. Recycling of biomass and the contribution from a reduced iron sulfide mineral zone are discussed as possible explanations for the sustained reducing conditions and continued chloromethane treatment.  相似文献   

5.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
During an environmental assessment of a former fleet vehicle maintenance facility located in Jacksonville, Florida, dissolved trichloroethene (TCE) concentrations exceeding the Florida groundwater standard (3 micrograms per liter) were detected at a depth of 40 feet (12 meters) below land surface (bls). A plume was delineated that measured approximately 600 feet (183 meters) by 150 feet (46 meters), extending across a major road and onto adjacent properties. Shaw Environmental, Inc., which was acquired by CB&I in February 2012, performed pilot tests with in situ oxygen curtain (iSOC), and the injection of Anaerobic Biochem Plus (ABC+), a mixture of lactates, a phosphate buffer, fatty acids, and zero‐valent iron. Based on the pilot‐test results, ABC+ appeared the more effective of the two methods and was selected for full‐scale implementation. In February 2011, Shaw Environmental, Inc. and a subcontractor used direct‐push technology to inject ABC+ in 120 borings. By September 2011, the treatment succeeded in lowering the concentrations of TCE to below the Florida standard in all impacted wells. Subsequent sampling events indicate that TCE concentrations have remained below the standard, but sampling continues for iron, which is decreasing but remains slightly elevated. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is utilized by microorganisms as an electron donor to transform electrophilic contaminants via reductive pathways. Over the last decade, organic mulch permeable reactive barriers (PRBs), or biowalls, have received increased interest as a relatively inexpensive slow‐release electron donor technology for addressing contaminated groundwater. To date, biowalls have been installed to enhance the passive bioremediation of groundwater contaminated with a variety of electrophilic compounds, including chlorinated solvents, explosives, and perchlorate. In addition, several mulch biowall projects are currently under way at several U.S. Department of Defense facilities. However, at the present time, the guidelines available for the design of mulch PRBs are limited to a few case studies published in the technical literature. A biowall design, construction, and operation protocol document is expected to be issued by the Air Force Center for Environmental Excellence in 2007. In this publication, three technical considerations that can have a significant impact on the design and performance of mulch PRBs are presented and discussed. These technical considerations are: (1) hydraulic characteristics of the mulch bed; (2) biochemical characteristics of different types of organic amendments used as mulch PRB fill materials; and (3) a transport model that can be used to estimate the required PRB thickness to attain cleanup standards. © 2007 Wiley Periodicals, Inc.  相似文献   

8.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
A chlorinated volatile organic compound (cVOC) source area approximately 25 by 100 ft in a heavily industrialized urban area was characterized with groundwater tetrachloroethene (PCE) concentrations up to 9,180 μg/L. This is approximately 6 percent of PCE's aqueous solubility, indicative of the presence of residual dense, nonaqueous phase liquid. The resulting dissolved‐phase plume migrated off‐site. Biotic and abiotic dechlorination using a combination of a food‐grade organic carbon‐based electron donor and zero‐valent iron suspended in a food‐grade emulsifying agent reduced the source area PCE concentrations by 98 percent within 27 weeks, with minimal downgradient migration of daughter products dichloroethene and vinyl chloride. Combining biological dechlorination with iron‐based chemical dechlorination is synergistic, enhancing treatment aggressiveness, balancing pH, and optimizing degradation of both DNAPL and dissolved‐phase cVOCs. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
An Accelerated Remediation Technologies (ART) In‐Well Technology pilot test was performed to evaluate the removal of chlorinated volatile organic compounds (VOCs) from groundwater. The ART In‐Well Technology was installed in one well located in the source area where dense nonaqueous‐phase liquid has been identified and VOC concentrations exceed 140,000 μg/L. Monitoring wells at the site were positioned between 10 and 170 feet from the ART test well. Overall, VOC concentrations from samples collected from the groundwater monitoring wells and in the vapors extracted for discharge from the ART treatment well were analyzed over the testing period. Monitoring results showed that concentrations of perchloroethylene were reduced in the closest monitoring well to nondetectable concentrations within 90 days. The cumulative removal of chlorinated VOCs from the ART test well over the six‐month pilot test period exceeded 9,500 pounds based on air monitoring data. The ART technology proved effective and cost‐efficient in reducing contaminant concentrations and removing a large mass of contamination from the subsurface in a short period of time. The radius of influence of the ART technology at the site was estimated to range between 65 and 170 feet. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Deep drainage technique utilised for flood mitigation in low-land coastal areas of Australia during the late 1960s has resulted in the generation of sulphuric acid in soil by the oxidation of pyritic materials. Further degradation of the subsurface environment with widespread contamination of the underlying soil and groundwater presents a major and challenging environmental issue in acid sulphate soil (ASS) terrains. Although several ASS remediation techniques recently implemented in the floodplain of Southeast Australia including operation of gates, tidal buffering and lime injections could significantly control the pyrite oxidation, they could not improve the long-term water quality. More recently, permeable reactive barriers (PRBs) filled with waste concrete aggregates have received considerable attention as an innovative, cost-effective technology for passive in situ clean up of groundwater contamination. However, long-term efficiency of these PRBs for treating acidic groundwater has not been established. This study analyses and evaluates the performance of a field PRB for treating the acidic water over 2.5 years. The pilot-scale alkaline PRB consisting of recycled concrete was installed in October 2006 at a farm of southeast New South Wales for treating ASS-impacted groundwater. Monitoring data of groundwater quality over a 30 month period were assessed to evaluate the long-term performance of the PRB. Higher pH value (~pH 7) of the groundwater immediately downstream of the PRB and higher rates of iron (Fe) and aluminium (Al) removal efficiency (>95%) over this study period indicates that recycled concrete could successfully treat acidic groundwater. However, the overall pH neutralising capacity of the materials within the barrier declined with time from an initial pH 10.2 to pH 7.3. The decline in the performance with time was possibly due to the armouring of the reactive material surface by the mineral precipitates in the form of iron and aluminium hydroxides and oxyhydroxides as indicated by geochemical modelling.  相似文献   

14.
A pilot‐scale study was performed using a palladium‐catalyzed and polymer‐coated nanoscale zero‐valent iron (ZVI) particle suspension at the Naval Air Station in Jacksonville, Florida. A total of 300 pounds of nanoscale ZVI particle suspension was injected via a gravity feed and recirculated through a source area containing chlorinated volatile organic compounds (VOCs). The recirculation created favorable mixing and distribution of the iron suspension and enhanced the mass transfer of sorbed and nonaqueous constituents into the aqueous phase, where the contaminants could be reduced. Between 65 and 99 percent aqueous‐phase VOC concentration reduction occurred, due to abiotic degradation, within five weeks of the injection. The rapid abiotic degradation processes then yielded to slower biological degradation as subsequent decreases in ‐elimination parameters were observed—yet favorable redox conditions were maintained as a result of the ZVI treatment. Post‐treatment analyses revealed cumulative reduction of soil contaminant concentrations between 8 and 92 percent. Aqueous‐phase VOC concentrations in wells side gradient and downgradient of the source were reduced up to 99 percent and were near or below applicable regulatory criteria. These reductions, coupled with the generation of innocuous by‐products, indicate that nanoscale ZVI effectively degraded contamination and reduced the mass flux from the source, a critical metric identified for source treatment. A summary of this project was recently presented at the US EPA Workshop on Nanotechnology for Site Remediation in Washington, D.C., on October 21–22, 2005. This case study supplied evidence that nanoscale zero valent iron, an emerging remediation technology, has been implemented successfully in the field. More information about this workshop and this presentation can be found at www.frtr.gov/nano/index.htm. © 2006 Wiley Periodicals, Inc.  相似文献   

15.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

19.
While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zero‐valent iron (ZVI)–based technologies, such as nanoscale iron and bimetallic ZVI, as well as naturally occurring reduced minerals incorporating dual‐valent iron (DVI), such as magnetite, green rust, and iron sulfides that are capable of dechlorinating solvents. A more recent area of development in ISCR has been in combining biological and abiotic processes. There are several ways in which biological and abiotic processes can be combined. First, the interaction between the two may be “causative.” For example, the Air Force Center for Engineering and the Environment's biogeochemical reductive dechlorination (BiRD) technology combines a mulch barrier with hematite and gypsum to create an iron‐sulfide‐based reducing zone. Biodegradation under sulfate‐reducing conditions produces sulfide that combines with the hematite to form iron sulfides. As such, the BiRD technology is “causative”; the biological processes create reducing minerals. The biological generation of other reducing minerals such as magnetite, siderite, and green rust is feasible and is, with magnetite, observed in nature at some petroleum sites. A second type of interaction between abiotic and biotic processes is “synergistic.” For example, biological processes can enhance the activity of reduced metals/minerals. This is the basis of the EHC® ISCR technologies, which combine ZVI with a (slowly) degradable carbon substrate. This combination rapidly creates buffered, strongly reducing conditions, which result in more complete solvent degradation (i.e., direct mineralization). The extent and level of reducing activity commonly observed are much greater when both the carbon substrate and the ZVI are present. When the carbon substrate is expended, the reducing activity due to ZVI alone is much less. The understanding of biogeochemical processes and their impact on abiotic processes is still developing. As that understanding develops, new and improved methods will be created to enhance volatile organic compound destruction. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
A field demonstration of a mulch permeable reactive barrier (PRB), or “biowall,” as an in situ treatment technology for explosives in groundwater is summarized. Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is then available for microorganisms to use as an electron donor to transform electrophilic contaminants via reductive pathways. A 100‐foot‐long and 2‐foot‐thick mulch biowall was installed at the Pueblo Chemical Army Depot in Colorado to treat a shallow groundwater plume containing hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX). To discourage groundwater flow bypassing around and under the biowall in this highly permeable formation, a hydraulic control was installed and the PRB was keyed into the bedrock. Technology performance was monitored using a monitoring well network to establish the development and extent of the downgradient treatment zone. Performance objectives of the field demonstration were: (1) greater than 90 percent removal of RDX across the PRB and the treatment zone; (2) an RDX concentration of less than 0.55 μg/L in the treatment zone; and (3) cumulative toxic intermediate concentration (nitroso intermediates of RDX, MNX, DNX, and TNX) of less than 20 percent of the upgradient RDX concentration. All performance objectives were met within seven months after installation once the system reached a pseudo‐steady state. By this point, a sustained reducing/treatment zone had been created downgradient of the mulch PRB that showed greater than 93 percent RDX removal, RDX concentrations less than 0.55 μg/L, and no accumulation of toxic intermediates. The mulch biowall implemented during this demonstration was successful at meeting performance objectives while addressing the majority of potential concerns of the technology. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号